自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 Could not build wheels for opencv-python which use PEP 517 and cannot be installed directly

Could not build wheels for opencv-python which use PEP 517 and cannot be installed directly直接运用conda安装:随后完成cv2的安装。

2023-02-26 15:20:20 4875 3

原创 机器学习笔记(六)Logistic回归

目录一、什么是Logistics回归二、sigmoid函数三、梯度上升法四、代码实现数据导入 决策边界 梯度上升 五、总结决策边界

2022-12-06 15:13:56 459

原创 机器学习笔记(五)朴素贝叶斯算法

贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主观偏见,也避免了单独使用样本信息的过拟合现象。贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。

2022-11-29 12:48:43 1022

原创 机器学习笔记(四)决策树剪枝

顾名思义,剪枝就是指将决策树的某些内部节点下面的节点都删掉,留下来的内部决策节点作为叶子节点。

2022-11-25 23:13:11 1987

原创 机器学习笔记(三)决策树

1.1 决策树的概念决策树(decision tree)是一种基本的分类与回归方法。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。决策树是一种描述对实例进行分类的树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果,本质是一颗由多个判断节点组成的树。分类决策树模型是一种树形结构。决策树由结点和有向边组成。

2022-11-13 22:16:13 842

原创 机器学习笔记(二)k-近邻算法(KNN)

KNN算法的核心思想是如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。KNN方法在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。优点:精度高、对异常值不敏感、无数据输入假定。

2022-11-05 15:07:58 784

原创 机器学习笔记(一)P-R曲线与ROC曲线

要知道什么是P-R曲线,首先,我们要先了解P和R分别代表什么意思。“P”是“precision”,代表准确率。“R”是“recall”,代表召回率。而要计算准确率和召回率,我们要先了解一下混淆矩阵。↓↓↓实际 \ 预测负正负TNFP正FNTPTP(true positive):实际为正例,预测为正例;FN(false negative):实际为正例,预测为负例;TN(true negative):实际为负例,预测为负例;

2022-10-29 15:43:33 1492

原创 修改MySQL密码

1.从MySQL的bin目录下打开cmd;2.输入mysqladmin -uroot -p原密码 password 新密码,并回车如,把密码985211改为123456:用新密码登入测试可确定密码是否修改成功。

2022-03-19 16:03:33 973

原创 水果商店系统数据库

一、实验目的与要求:1、掌握MySQL中如何创建数据库和表的方法(要求在交互式命令提示符下完成,截图)2、熟练掌握MySQL的数据类型、主键实体完整性的设置3、参照完整性的定义及应用(Navicat可视化操作,熟悉代码)4、插入数据(Navicat完成)5、数据库的备份操作二、实验内容:1、创建名为fruitshop的数据库,并创建数据表fruits、customers(客户)、orderitems(订单详单)、suppliers(供货商)和orders(订单总表),表结构和约束条件如下:

2022-03-19 15:26:24 3360

原创 JAVA环境安装+IDEA安装+IDEA汉化一步到位

文章目录JAVA环境安装+IDEA安装+IDEA汉化一步到位一、Java的下载与安装:二、JAVA的环境配置:三、检验JAVA环境是否配置完成:四、IDEA的下载与安装(windows):五、IDEA汉化包下载:JAVA环境安装+IDEA安装+IDEA汉化一步到位一、Java的下载与安装:首先当然是到去下载JAVA的安装包了。进入官网后就点击下载嘛。然后就可以看到下面这个界面,因为我是在windows系统下的,所以我就选了倒数第二个下载了。把这个框框勾上就能下载了。下载好后我是先在D盘新

2021-07-23 10:20:33 682

原创 计算机视觉之三维重建基础笔记

文章目录计算机视觉之三维重建学习笔记一、摄像机几何1.1针孔摄像机&透镜1.2摄像机几何1.3其他摄像机模型二、摄像机标定2.1摄像机标定2.2径向畸变摄像机标定三、单视图测量3.1 2D变换3.2影消点与影消线3.3单视图重构四、三维重建基础与极几何4.1重建基础4.2极几何4.3本质矩阵与基础矩阵4.4基础矩阵估计五、双目立体视觉系统5.1双目立体视觉系统与平行视图5.2平行视图校正5.3平行视图的对应点搜索六、多视图几何6.1欧式结构恢复6.2仿射结构恢复5.1双目立体视觉系统与平行视图5.2

2021-07-17 09:05:17 1235 2

原创 图片数据处理——椒盐噪声

为了扩大数据集或者其他原因,我们通常需要对图片数据进行处理,加噪处理能让图片清晰度下降,模拟现实中的各种干扰。椒盐噪声代码:import osimport cv2import numpy as npimport randomdef sp_noise(noise_img, proportion): ''' proportion的值表示加入噪声的量,可根据需要自行调整 ''' height, width = noise_img.shape[0], noise_img

2021-06-04 19:56:18 490

原创 基于faster-rcnn网络的视力表字符检测

文章目录一、数据集的制作1、获取数据2、制作所要的数据图片3、添加标签二、模型的训练1、用编译器打开文件夹2、修改部分参数3、准备工作4、开始训练三、模型的预测1、准备工作2、开始预测四、模型评估1、修改参数2、处理数据3、得到结果本实验基于pytorch的faster-rcnn网络实现,从自己制作数据集到完成模型的训练。一、数据集的制作1、获取数据我们可以通过爬虫爬取网上不同的视力表储存起来,也可以自己从网上下载一些图片,因为是自己做个小实验,所以不必下载太多。2、制作所要的数据图片从下载下来

2021-06-03 21:34:43 291

原创 Hinton机器学习与神经网络2

Hinton机器学习与神经网络2二、感知器的学习过程1、神经网络架构介绍前馈神经网络信息从输入单元层开始,朝着一个方向传递,通过隐藏层直至输出层。如果隐含层超过一层就称之为深度神经网络循环神经网络信息循环流动,这些网络可以长时间的记忆信息,还可以显示各种有意思的震荡。循环神经网络的图结构中,包含了一定的有向环,所有更加难训练。循环网络是对时序数据建模的一种非常好的方法,这使我们拥有了隐藏单元之间的联系。而在每一个时刻,当时的隐藏单元的状态决定了在下一个时刻的隐藏单元的状态。双向对偶网

2021-01-31 17:29:07 166

原创 Hinton机器学习与神经网络1

文章目录Hinton机器学习与神经网络一、绪论:面向机器学习的神经网络1、为什么我们需要机器学习2、什么是神经元网络3、简单的神经元模型线性阈值神经元二值化阈值神经元Relu激活神经元Sigmoid神经元随机二进制神经元4、ANN的MNIST学习范例5、机器学习算法的三大类①监督学习②强化学习③无监督学习Hinton机器学习与神经网络一、绪论:面向机器学习的神经网络1、为什么我们需要机器学习因为很多任务通过人写程序不能够很好的达到我们的目的,而机器学习能够依靠大量的数据完成,不过也不是百分百的正确,

2021-01-27 18:10:09 398

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除