在介绍编程之前,先让我们来回顾一下在高中的物理课上我们所学的关于水波的知识。
水波有如下几个特性:
扩散:当你投一块石头到水中,你会看到一个以石头入水点为圆心所形成的一圈圈的水波,这里,你可能会被这个现象所误导,以为水波上的每一点都是以石头入水点为中心向外扩散的,这是错误的。实际上,水波上的任何一点在任何时候都是以自己为圆心向四周扩散的,之所以会形成一个环状的水波,是因为水波的内部因为扩散的对称而相互抵消了。
衰减:因为水是有阻尼的,否则,当你在水池中投入石头,水波就会永不停止的震荡下去。
水的折射:因为水波上不同地点的倾斜角度不同,所以,因为水的折射,我们从观察点垂直往下看到的水底并不是在观察点的正下方,而有一定的偏移。如果不考虑水面上部的光线反射,这就是我们能感觉到水波形状的原因。
反射:水波遇到障碍物会反射。
衍射:忽然又想到这一点,但是在程序里却看不到,如果能在水池中央放上一块礁石,或放一个中间有缝的隔板,那么就能看到水波的衍射现象了。
好了,有了这几个特性,再运用数学和几何知识,我们就可以模拟出真实的水波了。但是,如果你曾用3DMax做过水波的动画,你就会知道要渲染出一幅真实形状的水波画面少说也得好几十秒,而我们现在需要的是实时的渲染,每秒种至少也得渲染20帧才能使得水波得以平滑的显示。考虑到电脑运算的速度,我们不可能按照正弦函数或精确的公式来构造水波,不能用乘除法,更不能用sin、cos,只能用一种取近似值的快速算法,尽管这种算法存在一定误差,但是为了满足实时动画的要求,我们不得不这样做。
首先我们要建立两个与水池图象一样大小的数组buf1[PoolWidth*PoolHeight]和buf2[PoolWidth*PoolHeight](PoolWidth=水池图象的象素宽度、PoolHeight=水池图象的象素高度),用来保存水面上每一个点的前一时刻和后一时刻波幅数据,因为波幅也就代表了波的能量,所以以后我们称这两个数组为波能缓冲区。水面在初始状态时是一个平面,各点的波幅都为0,所以,这两个数组的初始值都等于0。
下面来推导计算波幅的公式
我们假设存在这样一个一次公式,可以在任意时刻根据某一个点周围前、后、左、右四个点以及该点自身的振幅来推算出下一时刻该点的振幅,那么,我们就有可能用归纳法求出任意时刻这个水面上任意一点的振幅。如左图,你可以看到,某一时刻,X0点的振幅除了受X0点自身振幅的影响外,同
水波有如下几个特性:
扩散:当你投一块石头到水中,你会看到一个以石头入水点为圆心所形成的一圈圈的水波,这里,你可能会被这个现象所误导,以为水波上的每一点都是以石头入水点为中心向外扩散的,这是错误的。实际上,水波上的任何一点在任何时候都是以自己为圆心向四周扩散的,之所以会形成一个环状的水波,是因为水波的内部因为扩散的对称而相互抵消了。
衰减:因为水是有阻尼的,否则,当你在水池中投入石头,水波就会永不停止的震荡下去。
水的折射:因为水波上不同地点的倾斜角度不同,所以,因为水的折射,我们从观察点垂直往下看到的水底并不是在观察点的正下方,而有一定的偏移。如果不考虑水面上部的光线反射,这就是我们能感觉到水波形状的原因。
反射:水波遇到障碍物会反射。
衍射:忽然又想到这一点,但是在程序里却看不到,如果能在水池中央放上一块礁石,或放一个中间有缝的隔板,那么就能看到水波的衍射现象了。
好了,有了这几个特性,再运用数学和几何知识,我们就可以模拟出真实的水波了。但是,如果你曾用3DMax做过水波的动画,你就会知道要渲染出一幅真实形状的水波画面少说也得好几十秒,而我们现在需要的是实时的渲染,每秒种至少也得渲染20帧才能使得水波得以平滑的显示。考虑到电脑运算的速度,我们不可能按照正弦函数或精确的公式来构造水波,不能用乘除法,更不能用sin、cos,只能用一种取近似值的快速算法,尽管这种算法存在一定误差,但是为了满足实时动画的要求,我们不得不这样做。
首先我们要建立两个与水池图象一样大小的数组buf1[PoolWidth*PoolHeight]和buf2[PoolWidth*PoolHeight](PoolWidth=水池图象的象素宽度、PoolHeight=水池图象的象素高度),用来保存水面上每一个点的前一时刻和后一时刻波幅数据,因为波幅也就代表了波的能量,所以以后我们称这两个数组为波能缓冲区。水面在初始状态时是一个平面,各点的波幅都为0,所以,这两个数组的初始值都等于0。
下面来推导计算波幅的公式
我们假设存在这样一个一次公式,可以在任意时刻根据某一个点周围前、后、左、右四个点以及该点自身的振幅来推算出下一时刻该点的振幅,那么,我们就有可能用归纳法求出任意时刻这个水面上任意一点的振幅。如左图,你可以看到,某一时刻,X0点的振幅除了受X0点自身振幅的影响外,同