深度学习教程 | 吴恩达专项课程 · 全套笔记解读


引言

本篇内容是ShowMeAI组织的深度学习教程 | 吴恩达专项课程 · 全套笔记解读系列教程入口,本教程依托于吴恩达老师的《深度学习专项课程》,对内容做了重新梳理与制作,以更全面和直观的图文方式,对深度学习涉及的知识、模型、原理、应用领域等进行详解。

内容覆盖:深度学习基础知识、神经网络、反向传播、优化算法(梯度下降、sgd、RMSProp、adam等)、梯度消失/爆炸与处理、模型问题诊断、神经网络效果优化、深度神经网络、超参数调优、Batch Normalization、标签错误与数据不匹配的处理办法、计算机视觉、CNN、卷积神经网络、目标检测、人脸识别、图像神经风格转换、序列建模、循环神经网络、RNN、自然语言处理、词嵌入、Seq2seq模型、注意力机制等。

教程地址

点击查看完整教程学习路径

内容章节

深度学习教程(1) | 深度学习概论

深度学习概论

深度学习教程(2) | 神经网络基础

神经网络基础

深度学习教程(3) | 浅层神经网络

浅层神经网络

深度学习教程(4) | 深层神经网络

深层神经网络

深度学习教程(5) | 深度学习的实用层面

深度学习的实用层面

深度学习教程(6) | 神经网络优化算法

神经网络优化算法

深度学习教程(7) | 网络优化:超参数调优、正则化、批归一化和程序框架

网络优化:超参数调优、正则化、批归一化和程序框架

深度学习教程(8) | AI应用实践策略(上)

AI应用实践策略(上)

深度学习教程(9) | AI应用实践策略(下)

AI应用实践策略(下)

深度学习教程(10) | 卷积神经网络解读

卷积神经网络解读

深度学习教程(11) | 经典CNN网络实例详解

经典CNN网络实例详解

深度学习教程(12) | CNN应用:目标检测

CNN应用:目标检测

深度学习教程(13) | CNN应用:人脸识别和神经风格转换

CNN应用:人脸识别和神经风格转换

深度学习教程(14) | 序列模型与RNN网络

序列模型与RNN网络

深度学习教程(15) | 自然语言处理与词嵌入

自然语言处理与词嵌入

深度学习教程(16) | Seq2seq序列模型和注意力机制

Seq2seq序列模型和注意力机制

ShowMeAI系列教程推荐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShowMeAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值