机器学习概述

机器学习概述与流程

一、机器学习简介
机器学习是一门入门容易但精通难的学科,分析人员需要掌握行业知识、理解数据隐含信息并把握需求,以确定使用的数据,这是数据分析的基础。其主要流程包括明确分析目标、数据收集、数据预处理、建模分析、结果评估、部署使用以及学习更新。

二、机器学习流程

1. 明确数据分析目标

这是机器学习首要的重要步骤,需要与用户充分沟通。例如,中国移动客户细分模型项目,以乐山市为试点城市,按用户行为细分,为相关部门制订策略提供基础。

2. 数据收集

收集相关数据(内部业务系统数据、外部数据),外部数据可通过网络爬虫、购买或交易方式获得。充足、全面的高质量数据是机器学习的基础,例如收集离网用户特征、23 转 4G、IPTV 内容推荐等相关数据,包括家庭状况、年龄、职业、性别、APP 使用行为等多方面信息。

3. 数据预处理

数据可能存在噪声、不一致、异常、个人隐私保护等问题,为保证数据质量,必要的数据治理是需要的,例如进行数据清理。

4. 数据建模

  • 算法选择:不同机器学习算法有各自的使用范围,算法本身没有绝对的好坏,需要通过实验比较确定合适的建模方法或算法。
  • 算法调优:包括对参数或结构等方面的优化。此阶段是机器学习的核心部分,使用分析方法从数据中提取知识。

5. 效果评估

选定模型后,评估机器学习结果对实现业务目标的帮助程度,可通过样本测试、现场抽样实验等方式。需注意欠拟合与过拟合的问题。

6. 部署使用与更新

有效的机器学习结果应能改善客户业务决策效果,带来价值。由于业务可能变化,部署过程中需要更新机器学习模型,机器学习不是一劳永逸的事情。

三、机器学习常用算法

1. 分类算法

  • 分类与回归的区别:回归分析是分析变量间的相关关系,分类是通过分析训练集数据为每个类别建立模型或挖掘规则,然后对其他数据对象进行分类。
  • 决策树原理:决策树、支持向量机、神经网络、朴素贝叶斯、Bayes 网络、k - 最近邻等是常用的分类方法。
  • 典型应用:如根据用户 ARPU 值预估用户收入,通过训练数据、预处理、标注工具等进行分类。

2. 神经网络

传统神经网络为 BP 神经网络,基本网络结构包括输入层、隐藏层和输出层。神经网络的训练主要包括前向传输和反向传播,其结果准确性与训练集样本数量和分类质量有关,新数据产生时需要动态优化网络结构和参数。

3. 深度学习

通过构建多个隐藏层和大量数据学习特征,提升分类或预测准确性。与神经网络相比,层数更多且有逐层训练机制避免梯度扩散,包括卷积神经网络(CNN)、深度神经网络(DNN)、循环神经网络(RNN)、对抗神经网络(GAN)等。

4. 聚类算法

聚类分析是把数据对象集合分成不同簇,使组与组之间差距尽可能大,组内数据差异尽可能小。K - means 是常用聚类算法,用户指定聚类类别数 K,随机选择 K 个对象作为初始聚类中心,根据距离划分簇并重新计算聚类中心,直到收敛。

5. 回归分析

回归分析是研究自变量和因变量之间关系的预测模型,用于分析自变量变化时因变量的变化值,可用于定性预测分析和定量分析变量间相关关系,包括线性回归、逻辑回归、多项式回归、逐步回归、岭回归、LASSO 回归等。

6. 关联分析

关联分析通过对数据集中某些属性同时出现的规律和模式来发现属性间的关联、相关、因果等关系,典型应用是购物篮分析,包括 Apriori 算法和 FP - Growth 算法。

四、其他相关内容

1. 数据可视化

数据可视化在机器学习中有重要作用,包括视觉获取信息、本身是机器学习方法、作为数据预处理或机器学习过程表示方式、表示机器学习结果等。

2. 分布式机器学习

分布式机器学习是利用多个计算节点协同工作完成机器学习任务的算法和系统,核心思想是分发数据和计算任务到多个节点并协调工作完成模型训练,相关工具和框架包括 Apache Spark MLlib、GraphLab 和 Apache Spark GraphX、DMTK 等。

3. 推荐算法

推荐算法包括基于内容的推荐、协同过滤推荐(用户基于协同过滤、物品基于协同过滤)、基于矩阵分解的推荐、混合推荐等算法,各有应用场景和优缺点。

4. 机器学习常见问题

  • 数据质量问题与预处理:数据质量要求完整、真实、一致、可靠,数据预处理占用大量工作量,可能存在数据量较少、过多、维度灾难、不完整、异常、重复、不一致等问题。
  • 机器学习常见陷阱:包括错误理解相关关系、错误的比较对象、数据抽样偏差、忽略或关注极值、相信巧合数据、数据未做归一化、忽视第三方数据、过度关心统计指标等。
  • 机器学习方法的选择:理解目标要求是关键,需对问题分类进行监督式或无监督学习,熟悉各类方法特性,进行数据探索性分析并选择较优模型,反复调整参数使模型结果稳定。

机器学习中的统计学习理论

一、统计分析的基本概念

  • 统计学习的定义:强调从数据中学习,通过估计数据的概率分布构建预测模型,实现知识发现。样本规模影响模型精度,较大样本规模能使模型更准确和泛化能力强。偏差表示模型准确性,方差反映模型稳定性,合适的权衡是提高模型性能的关键。
  • 学习类型
    • 监督学习:依赖带有已知标签的数据集进行模型训练,通过比较预测值与真实值调整模型参数。
    • 无监督学习:无需标签数据,通过聚类、降维等技术探索数据内在结构和隐藏模式。
    • 半监督学习:利用有限的标签数据和大量无标签数据共同训练模型,提高学习效率和泛化能力。
    • 强化学习:通过与环境的交互和试错,不断调整策略以获得最大化累积回报,适用于序列决策问题。
  • 生成模型和判别模型:生成模型如朴素贝叶斯、隐马尔可夫模型等,通过学习数据的联合概率分布来生成新数据,能揭示数据间的内在关系;判别模型如支持向量机、逻辑回归等,直接学习不同类别间的最优决策边界,对分类问题高效且准确。生成模型适用于数据生成、异常检测等场景,判别模型在分类任务中表现优越,具体选择需基于数据特性和任务需求。

二、统计学习方法三要素

  • 模型:数据的丰富性和质量直接影响统计学习模型的性能上限,高质量数据能训练出更准确的模型。
  • 策略:策略的选择直接关系到模型泛化能力的高低,合理选择训练算法、参数调整和评估准则能有效提升模型性能。数据分布影响策略有效性,特征选择能优化策略表现。
  • 算法:统计学习算法是机器学习的基石,通过数据驱动自动学习数据中的模式和规律,实现智能化预测和决策。数据量与算法性能相关,充足的数据能够支持更复杂算法的训练,提升模型的准确率和鲁棒性。算法复杂性与过拟合需要平衡,非参数方法如核方法和随机森林等展现出强大的泛化能力和适应性。

三、模型假设与验证

  • 模型假设的重要性:模型假设是预测准确性的基石,例如线性回归假设变量间存在线性关系,通过数据验证假设可确保模型的有效应用。
  • 数据分布影响假设:模型假设需符合实际数据分布,数据分布的多样性直接影响假设的合理性。
  • 交叉验证验证假设:通过 K 折交叉验证等技术,可以评估模型假设在不同数据集上的泛化能力,确保模型假设的稳健性。交叉验证能防止过拟合,提高模型在未知数据上的泛化能力,通过多次验证并计算平均性能指标,能准确评估模型性能,适用于多种场景。

四、模型评估与选择

  • 经验误差与过拟合:交叉验证能避免过拟合,评估模型的泛化能力,在模型评估中要追求在训练集和未知数据上的准确性,实现准确性与泛化性的平衡,ROC 曲线是评估二分类模型性能的全面工具。
  • 误差分析:误差分析中常见问题是过拟合与欠拟合,利用独立的验证集评估模型性能并调整参数能有效防止过拟合,提升模型泛化能力。机器学习中的误差可分解为偏差和方差,平衡二者是优化关键。
  • 模型选择准则:模型选择时需权衡偏差与方差,简单模型易产生高偏差但低方差,复杂模型则相反,需通过数据性能评估确定最优模型;通过交叉验证评估模型在未见数据上的性能,减少过拟合,选择更泛化的模型;奥卡姆剃刀原则在模型选择时,若无足够数据或理论支持复杂模型更优,则选择最简单的模型。

五、生成模型

  • 生成模型与数据分布:生成模型通过学习数据的内在结构和分布规律,能够生成新的、符合原始数据特性的样本,有助于数据增强和异常检测。
  • 生成模型在深度学习中的应用:生成对抗网络(GAN)是生成模型在深度学习中的成功应用之一,它利用对抗训练学习产生接近真实样本的假数据。
  • 生成模型与分类器比较:相较于判别式分类器,生成模型提供了对数据概率分布的估计,使其在不平衡数据、异常值检测方面表现更稳健。
  • 生成模型的评估标准:生成模型的评估常采用对数似然度、生成样本的视觉或统计指标等方式,这些指标可以量化模型生成数据的质量。
  • 贝叶斯估计:依赖先验知识,具有可解释性,能够处理小样本,通过迭代方式更新后验分布。
  • EM 算法:通过迭代更新隐变量的期望,最大化观测数据的似然函数,常用于处理含有隐变量的概率模型,应用广泛且具有收敛性保障。

六、判别模型

  • 判别模型:极大似然估计:判别模型如 SVM 直接学习条件概率,在分类任务中表现出更高的效率和准确性,对特征选择敏感,合理的特征选择对模型性能至关重要。
  • 判别模型:条件概率分布:条件概率分布有助于揭示变量间的依赖关系,对于数据分析和特征选择具有重要意义,能提高分类器的预测精度。
  • Logistic 回归与最大熵模型:Logistic 回归通过转换线性模型输出为概率分布,适用于二分类问题,并给出明确的分类决策边界;最大熵模型基于最大熵原理,确保模型在符合已知约束下,对于未知数据保持最大不确定性,实现信息最大化。两者对特征选择敏感,合理的特征组合和选择能显著提升模型的分类性能,加入正则化项能有效防止过拟合,提高模型的泛化能力。

七、统计学习在实际中的应用

  • 领域应用概述:统计学习理论在推荐系统中能精准预测用户兴趣,提升推荐精准率和用户满意度;在信贷风险评估中,银行利用统计学习模型有效预测违约风险,减少损失;在医疗图像诊断中,统计学习算法可辅助医生对图像进行快速准确的诊断;在股票趋势预测中,基于统计学习的时间序列分析能辅助投资决策。
  • 数据分析案例:在贷款违约预测模型中,应用统计学习理论选择最具区分性的特征,模型准确度提高了 10%,有效减少了过拟合;通过对 SVM 模型复杂度(C 值)的调参,验证了统计学习中的偏差 - 方差权衡;采用 10 折交叉验证评估分类器性能,得到更稳定的结果,平均准确率比单次训练高出 2%,证明了交叉验证的有效性;在图像识别任务中,加入 L2 正则化项后,模型在验证集上的性能显著提升,说明正则化能有效控制模型复杂度,防止过拟合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值