词频计算方法(TF/IDF)

文本分类中,如何定义一个词出现的频率呢?如果仅仅用这个词在文章中出现的次数来定义词频,那么某个词在长文件中的词频一般会大于这个词在短文件中的词频。不能说这个词就是长文件一个好的标识词,为了避免这种情况可以使用TF来表示,TF=某词出现次数/总词数。还有像汉语中“的”、“地”、“我们”等这些词,在文章中出现的频率很高,但是对文章分类的作用几乎没有,所以如果只用TF来定义词频,无法避免此类问题,可以再定义IDF,IDF=lg(总文章数/出现某个词的文章数)。这样两种情况都考虑,取它们的乘积(词频=TF*IDF)作为某个词的词频效果就会很好。

总结:
例如:有1000篇文章,其中含有Android这个词的文章有10篇,在有1625个词的一篇文章中Android出现了26次,则Android这个词在这篇文章中的词频=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值