词频计算

TF-IDF算法是一种统计方法,用于评估词在文件中的重要性。它考虑了词在文件中的频率和在整个语料库中的分布。TF-IDF越大,词对文章的区分度越高,适合作为文章的关键词。Python中使用scikit-learn的CountVectorizer和TfidfTransformer计算TF-IDF,首先需要对文本进行分词,然后转换为词频矩阵。
摘要由CSDN通过智能技术生成

tf_idf

TF-IDF(词频-逆文档频率)算法是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。该算法在数据挖掘、文本处理和信息检索等领域得到了广泛的应用,如从一篇文章中找到它的关键词。

TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TF-IDF实际上就是 TF*IDF,其中 TF(Term Frequency),表示词条在文章Document 中出现的频率;IDF(Inverse Document Frequency),其主要思想就是,如果包含某个词 Word的文档越少,则这个词的区分度就越大,也就是 IDF 越大。对于如何获取一篇文章的关键词,我们可以计算这边文章出现的所有名词的 TF-IDF,TF-IDF越大,则说明这个名词对这篇文章的区分度就越高,取 TF-IDF 值较大的几个词,就可以当做这篇文章的关键词。

计算步骤

计算词频(TF)

词频=某个词在文章中的出现次数 / 文章总次数

计算逆文档频率(IDF)

逆文档频率=log(语料库的文档总数 / 包含该词的文档数+1)

计算词频-逆文档频率(TF-IDF)
词频−逆文档频率=词频∗逆文档频率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值