计算思维(Computational Thinking)是系统的阐述并解决问题的一种思维方式或思维过程。计算思维借鉴了计算机科学的概念和原理。计算思维不仅限于计算机科学家或程序员使用,它是一种通用的思维方式,任何人都可以学习和应用,以更有效地解决问题。
概念4-什么是计算思维?
计算思维的核心要素包括:分解、模式识别、抽象、算法、建模、调试、泛化等。
分解:将复杂而庞大的问题系统的分解为一个个具体的问题单元。
模式识别:识别问题之间和问题内部的相似之处。
抽象:通过削减无关紧要的细节,使事物更容易被理解的过程。
算法:在概念上 通过一种清晰界定的步骤和顺序 获得问题的解决方案。
建模:对具体算法进行提炼、封装,使其有清晰的输入、输出,且模型可靠稳定。
调试:综合运用测试、追溯和逻辑思维等分析与评价技能,来预测和验证结果。
泛化:调整/优化现有模型以解决新的问题,或一类问题。就是常说的举一反三。
例如,我们需要画一辆小汽车,我们先通过分解思维,将画一辆小汽车这个复杂的大问题,拆解成更可执行的、更好理解的小步骤,例如画车窗、画车辆外轮廓、画车轮等。
第二步,通过模式识别,找到事物的特征,寻找事物之间的共性,找到不同车之间的相同点,例如车轮的相同点。
第三步,剔除无关紧要的部分,聚焦重要的关键信息。
第四步,设计画小汽车的算法,用一系列清晰界定的步骤和过程来确定问题的解决方案。
计算思维的应用非常广泛,它不仅限于计算机科学领域,还可以应用于数学、工程、生物学、经济学等多个学科。通过培养计算思维,人们可以提高解决问题的能力,更好地适应快速变化的世界。