Dijkstra算法正确性的证明

Dijkstra 算法正确性的证明

问题

给定一个非负权边的图,规定起点为 u u u,求从 u u u出发到每一个节点的最短路径。(求解非负权图上单源最短路径)

流程简述

将结点分成两个集合:已确定最短路长度的点集(记为 S S S集合)的和未确定最短路长度的点集(记为 T T T集合)。

一开始所有的点都属于 T T T集合, d i s ( s ) = 0 \mathrm{dis}(s) = 0 dis(s)=0,其他点的 d i s \mathrm{dis} dis均为 + ∞ +\infty +

然后重复这些操作:

  1. T T T集合中,选取一个最短路长度最小的结点,移到 S S S集合中;
  2. 对那些刚刚被加入 S S S集合的结点的所有在 T T T内的邻接点更新 d i s \mathrm{dis} dis

直到 T T T集合为空,算法结束。

正确性证明

显然,Dijkstra算法的正确性取决于命题「每当一个结点 v v v加入 S S S集合时,此时 d i s ( v ) \mathrm{dis}(v) dis(v)对应的路径 r : u → v r : u \rightarrow v r:uv的长必为全局最短路径长 D ( v ) D(v) D(v)」的真伪。

(反证法)假设存在另一条路径 r ′ : u → v r' : u \rightarrow v r:uv为全局最短路径,即
D ( v ) < d i s ( v ) D(v) < \mathrm{dis}(v) D(v)<dis(v)
有一个非常重要的点: r ′ r' r的结点中除了终点 v ∈ T v \in T vT,必然存在另一点 t ∈ T t \in T tT

证明:(反证法)假设 r ′ r' r只有终点 v v v T T T内的路径。

根据操作2,此时 d i s ( v ) \mathrm{dis}(v) dis(v)已经被 v v v的所有在 S S S内的前驱结点更新(不单只是 v v v T T T内所有的结点也被所有相应的前驱结点更新),对应的路径 r r r已经是所有只有终点 v v v T T T内的路径 u → v u \rightarrow v uv最短的一条路径,因此不存在另一条只有终点 v v v T T T内的路径 r ′ r' r,使得 r ′ r' r的路径长 ∣ r ′ ∣ |r'| r r r r的路径长 ∣ r ∣ |r| r短,与假设矛盾。

r ′ r' r的结点中除了终点 v ∈ T v \in T vT,必然存在另一点 t ∈ T t \in T tT
图1

因此不妨设路径 r ′ r' r第一个 T T T内的结点为 t t t

在这里插入图片描述

对于从 T T T通过Dijkstra算法选出来的结点 v v v,有另一个非常重要的点:所有在 T T T内的结点中, d i s ( v ) \mathrm{dis}(v) dis(v)最小。因此
d i s ( t ) ≥ d i s ( v ) \mathrm{dis}(t) \ge \mathrm{dis}(v) dis(t)dis(v)
在全局最短路径 r ′ r' r中,设局部路径
s 1 : u → t s 2 : t → v s_1:u \rightarrow t \qquad s_2:t \rightarrow v s1:uts2:tv
根据操作2,此时 d i s ( t ) \mathrm{dis} (t) dis(t)已经被 t t t的所有在 S S S内的前驱结点更新,因此 d i s ( t ) \mathrm{dis} (t) dis(t)对应的路径已经是
只有终点 t t t T T T内的最短路径
。因为 s 1 ⊆ r ′ s_1 \sube r' s1r,所以 s 1 s_1 s1必为 u → t u \rightarrow t ut
全局
最短路径,又因为 s 1 s_1 s1是只有终点 t t t T T T内的路径,故 s 1 s_1 s1也为只有终点 t t t T T T内的最短路径,因此有
D ( t ) = d i s ( t ) D(t) = \mathrm{dis} (t) D(t)=dis(t)
在非负权图中,有
∣ s 2 ∣ ≥ 0 |s_2| \ge 0 s20
根据假设(路径 r ′ : u → t → v r': u \rightarrow t \rightarrow v r:utv为全局最短路径),有
D ( v ) = D ( t ) + ∣ s 2 ∣ = d i s ( t ) + ∣ s 2 ∣ ≥ d i s ( t ) ≥ d i s ( v ) > D ( v ) D(v) = D(t) + |s_2| = \mathrm{dis}(t) + |s_2| \ge \mathrm{dis}(t) \ge \mathrm{dis}(v) > D(v) D(v)=D(t)+s2=dis(t)+s2dis(t)dis(v)>D(v)
这显然不成立,原命题得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值