Dijkstra 算法正确性的证明
问题
给定一个非负权边的图,规定起点为 u u u,求从 u u u出发到每一个节点的最短路径。(求解非负权图上单源最短路径)
流程简述
将结点分成两个集合:已确定最短路长度的点集(记为 S S S集合)的和未确定最短路长度的点集(记为 T T T集合)。
一开始所有的点都属于 T T T集合, d i s ( s ) = 0 \mathrm{dis}(s) = 0 dis(s)=0,其他点的 d i s \mathrm{dis} dis均为 + ∞ +\infty +∞。
然后重复这些操作:
- 从 T T T集合中,选取一个最短路长度最小的结点,移到 S S S集合中;
- 对那些刚刚被加入 S S S集合的结点的所有在 T T T内的邻接点更新 d i s \mathrm{dis} dis。
直到 T T T集合为空,算法结束。
正确性证明
显然,Dijkstra算法的正确性取决于命题「每当一个结点 v v v加入 S S S集合时,此时 d i s ( v ) \mathrm{dis}(v) dis(v)对应的路径 r : u → v r : u \rightarrow v r:u→v的长必为全局最短路径长 D ( v ) D(v) D(v)」的真伪。
(反证法)假设存在另一条路径
r
′
:
u
→
v
r' : u \rightarrow v
r′:u→v为全局最短路径,即
D
(
v
)
<
d
i
s
(
v
)
D(v) < \mathrm{dis}(v)
D(v)<dis(v)
有一个非常重要的点:
r
′
r'
r′的结点中除了终点
v
∈
T
v \in T
v∈T,必然存在另一点
t
∈
T
t \in T
t∈T。
证明:(反证法)假设 r ′ r' r′是只有终点 v v v在 T T T内的路径。
根据操作2,此时 d i s ( v ) \mathrm{dis}(v) dis(v)已经被 v v v的所有在 S S S内的前驱结点更新(不单只是 v v v, T T T内所有的结点也被所有相应的前驱结点更新),对应的路径 r r r已经是所有只有终点 v v v在 T T T内的路径 u → v u \rightarrow v u→v中最短的一条路径,因此不存在另一条只有终点 v v v在 T T T内的路径 r ′ r' r′,使得 r ′ r' r′的路径长 ∣ r ′ ∣ |r'| ∣r′∣比 r r r的路径长 ∣ r ∣ |r| ∣r∣短,与假设矛盾。
故 r ′ r' r′的结点中除了终点 v ∈ T v \in T v∈T,必然存在另一点 t ∈ T t \in T t∈T。
因此不妨设路径 r ′ r' r′中第一个在 T T T内的结点为 t t t。
对于从
T
T
T中通过Dijkstra算法选出来的结点
v
v
v,有另一个非常重要的点:所有在
T
T
T内的结点中,
d
i
s
(
v
)
\mathrm{dis}(v)
dis(v)最小。因此
d
i
s
(
t
)
≥
d
i
s
(
v
)
\mathrm{dis}(t) \ge \mathrm{dis}(v)
dis(t)≥dis(v)
在全局最短路径
r
′
r'
r′中,设局部路径
s
1
:
u
→
t
s
2
:
t
→
v
s_1:u \rightarrow t \qquad s_2:t \rightarrow v
s1:u→ts2:t→v
根据操作2,此时
d
i
s
(
t
)
\mathrm{dis} (t)
dis(t)已经被
t
t
t的所有在
S
S
S内的前驱结点更新,因此
d
i
s
(
t
)
\mathrm{dis} (t)
dis(t)对应的路径已经是只有终点
t
t
t在
T
T
T内的最短路径。因为
s
1
⊆
r
′
s_1 \sube r'
s1⊆r′,所以
s
1
s_1
s1必为
u
→
t
u \rightarrow t
u→t的全局最短路径,又因为
s
1
s_1
s1是只有终点
t
t
t在
T
T
T内的路径,故
s
1
s_1
s1也为只有终点
t
t
t在
T
T
T内的最短路径,因此有
D
(
t
)
=
d
i
s
(
t
)
D(t) = \mathrm{dis} (t)
D(t)=dis(t)
在非负权图中,有
∣
s
2
∣
≥
0
|s_2| \ge 0
∣s2∣≥0
根据假设(路径
r
′
:
u
→
t
→
v
r': u \rightarrow t \rightarrow v
r′:u→t→v为全局最短路径),有
D
(
v
)
=
D
(
t
)
+
∣
s
2
∣
=
d
i
s
(
t
)
+
∣
s
2
∣
≥
d
i
s
(
t
)
≥
d
i
s
(
v
)
>
D
(
v
)
D(v) = D(t) + |s_2| = \mathrm{dis}(t) + |s_2| \ge \mathrm{dis}(t) \ge \mathrm{dis}(v) > D(v)
D(v)=D(t)+∣s2∣=dis(t)+∣s2∣≥dis(t)≥dis(v)>D(v)
这显然不成立,原命题得证。