抑郁检测用文本数据集

CLEF/eRsik 2017

https://link.springer.com/content/pdf/10.1007%2F978-3-319-65813-1_30.pdf

该数据集由887个Reddit用户组成,分为抑郁症患者(positive)和正常人(negative)两类。

每个用户的文本按时间顺序排列,并被分成10个chunk。其中chunk1包括最旧的10%的消息,chunk2包括第二个最旧的10%的信息,依此类推。

 

RSDD

https://arxiv.org/abs/1709.01848

该数据集来源于公开可用的Reddit帖子,其中包含超过9,000名自曝抑郁症诊断用户与超过107,000名匹配的对照用户。

数据采用JSON格式,每行是代表一个用户的数组,标签字段包括用户的标签(control或depression),posts字段包含(timestamp,untokenized post)对。

AI实战-学生抑郁症数据集分析预测实例(含20个源代码+2.68 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共156.92 KB;数据大小:1个文件共2.68 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split sklearn.preprocessing.MinMaxScaler sklearn.tree.DecisionTreeClassifier sklearn.model_selection.cross_val_predict sklearn.model_selection.GridSearchCV sklearn.svm.SVC warnings sklearn.linear_model.LogisticRegression matplotlib.pyplot seaborn math sklearn.preprocessing.StandardScaler sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.roc_auc_score xgboost.XGBClassifier sklearn.feature_selection.mutual_info_classif sklearn.cluster.KMeans sklearn.metrics sklearn.metrics.ConfusionMatrixDisplay sklearn.svm.LinearSVC scipy.stats.chi2_contingency sklearn.decomposition.PCA sklearn.linear_model.LinearRegression scipy.stats.zscore sklearn.ensemble.RandomForestClassifier pickle sklearn.metrics.confusion_matrix sklearn.metrics.roc_curve sklearn.metrics.auc sklearn.metrics.precision_recall_curve sklearn.discriminant_analysis.LinearDiscriminantAnalysis scipy.stats.f_oneway scipy.stats.ttest_ind imblearn.combine.SMOTEENN sklearn.preprocessing.LabelEncoder sklearn.ensemble.GradientBoostingClassifier sklearn.ensemble.AdaBoostClassifier sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.precision_score sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.OrdinalEncoder sklearn.ensemble.RandomForestRegressor IPython.core.interactiveshell.InteractiveShell collections.Counter sklearn.metrics.mean_squared_error sklearn.metrics.r2_score sklearn.metrics.mean_absolute_error sklearn.model_selection.learning_curve joblib sklearn.feature_selection.f_classif
### 抑郁症相关文本数据集获取途径 对于抑郁症相关的文本数据集,多个在线资源提供不同类型的公开数据集合供研究者下载和使用。这些数据集通常包含了来自社交媒体平台、论坛帖子以及临床记录等多种来源的文字材料。 #### 常见的抑郁症文本数据集源: - **Depression and Anxiety Detection Dataset** 这一数据集中含有大量带有标签的心理健康讨论区留言,特别适合用来训练检测抑郁症状况下的自然语言处理模型[^2]。 - **Reddit Mental Health Datasets (如 r/depression, r/anxiety 等子版块)** Reddit 上有许多专注于心理健康的社区,在这里可以找到经过整理后的用户分享经历作为文本样本。这类资料有助于理解公众如何表达自己的感受并寻求帮助。 - **CLPsych Shared Task Data Sets** CLPsych 组织定期举办共享任务比赛,其中涉及到了心理健康领域内的各种挑战赛题目。参赛队伍所使用的部分语料库也会对外开放访问权限给后续的研究人员继续探索利用[^1]。 为了合法合规地获得上述任何一个数据库的内容,建议直接前往官方网页查询具体的分发渠道与授权条款。一般情况下,可以通过注册账号提交申请表单的方式完成初步认证流程之后再进行下一步操作。 ```bash # 访问链接示例 https://www.kaggle.com/datasets # Kaggle 数据集页面 http://clpsych.org/shared-tasks.html # CLPsych 共享任务主页 ```
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值