抑郁检测用文本数据集

CLEF/eRsik 2017

https://link.springer.com/content/pdf/10.1007%2F978-3-319-65813-1_30.pdf

该数据集由887个Reddit用户组成,分为抑郁症患者(positive)和正常人(negative)两类。

每个用户的文本按时间顺序排列,并被分成10个chunk。其中chunk1包括最旧的10%的消息,chunk2包括第二个最旧的10%的信息,依此类推。

 

RSDD

https://arxiv.org/abs/1709.01848

该数据集来源于公开可用的Reddit帖子,其中包含超过9,000名自曝抑郁症诊断用户与超过107,000名匹配的对照用户。

数据采用JSON格式,每行是代表一个用户的数组,标签字段包括用户的标签(control或depression),posts字段包含(timestamp,untokenized post)对。

AI实战-学生抑郁症数据集分析预测实例(含20个源代码+2.68 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共156.92 KB;数据大小:1个文件共2.68 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split sklearn.preprocessing.MinMaxScaler sklearn.tree.DecisionTreeClassifier sklearn.model_selection.cross_val_predict sklearn.model_selection.GridSearchCV sklearn.svm.SVC warnings sklearn.linear_model.LogisticRegression matplotlib.pyplot seaborn math sklearn.preprocessing.StandardScaler sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.roc_auc_score xgboost.XGBClassifier sklearn.feature_selection.mutual_info_classif sklearn.cluster.KMeans sklearn.metrics sklearn.metrics.ConfusionMatrixDisplay sklearn.svm.LinearSVC scipy.stats.chi2_contingency sklearn.decomposition.PCA sklearn.linear_model.LinearRegression scipy.stats.zscore sklearn.ensemble.RandomForestClassifier pickle sklearn.metrics.confusion_matrix sklearn.metrics.roc_curve sklearn.metrics.auc sklearn.metrics.precision_recall_curve sklearn.discriminant_analysis.LinearDiscriminantAnalysis scipy.stats.f_oneway scipy.stats.ttest_ind imblearn.combine.SMOTEENN sklearn.preprocessing.LabelEncoder sklearn.ensemble.GradientBoostingClassifier sklearn.ensemble.AdaBoostClassifier sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.precision_score sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.OrdinalEncoder sklearn.ensemble.RandomForestRegressor IPython.core.interactiveshell.InteractiveShell collections.Counter sklearn.metrics.mean_squared_error sklearn.metrics.r2_score sklearn.metrics.mean_absolute_error sklearn.model_selection.learning_curve joblib sklearn.feature_selection.f_classif
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值