
cv君独家视角 | AI内幕系列
文章平均质量分 92
一个深度探索人工智能(AI)的专题。从GPT-4的技术革命到深度学习框架的幕后故事,从计算机视觉的分类、检测、图像重建到多模态融合,我们将带你领略AI的前沿技术与未来趋势。同时,深入分析AI如何重塑医疗、金融、交通等行业,揭示AI黑科技的神秘面纱。无论你是技术专家还是科技爱好者,这里都有你想要的内容
优惠券已抵扣
余额抵扣
还需支付
¥19.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
cv君
限时新年大礼包:所有专栏全部8折+送全部150篇文章+送3K人技术答疑群+本人答疑!!! 新年贺送时间:25年2月1日-3月1日(联系VX:zxx15277368495z)
cv君是人工智能专业的AI科班优秀毕业生,从18年搞算法,至今已七年,曾在Vivo任职AI算法工程师;曾在Intel获得过多次带高薪的奖,曾获CCF视觉算法赛冠军、Kaggle银牌、阿里世界人工智能大赛Top10、ICLM Top5,任职期间获公司:唯一S级员工;微软黑客松比赛二等奖;多篇论文专利擅长AI全栈领域算法,。
cv君是科研热爱者,从不写水文,感谢订阅,愿你在此获得学习和成长!
因为热爱,所以坚持去做! —cv君
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
cv君独家视角 | AI内幕系列一:让AI学相机对焦: Learning to AutoFocus
实际上,这个论文开创了比较新颖的思路,并使用优秀的方法解决一些实际问题,尤其是在低帧率下对焦,提供了很大的帮助,基于纯反差爬山的方法已经难以在低帧率(弱光下)得到很快的速度了;但这个方法除了上述提到的问题外,想要落地,还需要解决两大难题,首先就是泛化问题上,由于是基于图像分类base方案的,而且还不单是分类,比普通分类难度高了一个档次,要想做好,需要收集数十万的数据对序列,还需要涵盖各式各样的场景图,单步或多步骤下的准确率,要达到99.x左右,不然难以落地超越激光+caf或pdaf+caf方案;原创 2024-05-28 10:48:49 · 30380 阅读 · 0 评论 -
Stroke-based Cyclic Amplifier (SbCA方法):实现图像任意尺度超清放大
在卫星遥感方面,SbCA可对低分辨率卫星图像进行超清晰重建,提升图像质量,为地理研究和环境监测提供更准确的数据支持。最后,这项技术的意义还在于它展示了一种全新的思路——将图像的矢量表示与深度学习相结合,为计算机视觉领域开辟了新的可能性。但这需要训练多个模型,存储和计算成本高,且缺乏灵活性。上述数据表明,完整模型的LPIPS比仅用DCM提升7.3%,MUSIQ提升88.4%,充分证明了联合设计的必要性。而SbCA的笔画表示形成了一个稳定的中间空间,就像在长途旅行中设置了多个"驿站",确保不会偏离正确路线。原创 2025-06-19 15:47:10 · 77 阅读 · 0 评论 -
基于强化学习的图像质量评估模型 Q-Insight
研究团队发现,仅以评分作为引导无法充分实现良好的画质理解,因此引入了多任务 GRPO 优化,设计了评分奖励、退化分类奖励和强度感知奖励,联合训练评分回归与退化感知任务。在图像质量评分任务上,Q-Insight 在多个公开数据集上的表现超过当前最先进的方法,尤其在域外数据上的泛化能力突出。在零样本图像比较推理任务上,Q-Insight 无需额外监督微调即可准确分析和比较图像质量,展现出强大的泛化推理能力。例如,在噪声退化类型的识别中,Q-Insight 的准确率达到了 1.0000,远高于其他方法。原创 2025-04-17 13:25:26 · 188 阅读 · 0 评论 -
热红外图像去雾与盲图像质量评估指标FADE
论文作者提出了一种在热红外光谱中生成合成雾霾的方法,并分析了无参考图像质量评估指标“雾感知密度评估器”(FADE)在热红外光谱中的适用性。通过对比去雾前后图像的FADE值差异(∆FADE),发现FADE在可见光和热红外光谱中均能有效区分雾霾图像和清晰图像。而在热红外光谱中,经过微调的DehazeFormer在所有指标上均显著优于其他方法,尤其是在严重雾霾条件下表现出优异的鲁棒性。FADE在热红外光谱中的有效性验证了其跨光谱的泛化能力,为无参考图像质量评估提供了新的工具。因此,为其创建生成了合成雾。原创 2025-04-17 12:46:17 · 183 阅读 · 0 评论 -
抑郁症检测:基于交叉注意力的多模态特征融合方法
它通过使用名为MacBERT的预训练模型提取文本中的词汇特征,并结合额外的Transformer模块优化特定任务的上下文理解,有效地捕获和整合了多模态数据中这些互补的信息,进一步提升了模型对目标任务的适应能力。借助整合多维度的信息,该模型实现了更为精准的评估,这种能力充分凸显了我们模型的稳健性,使其能够在社交媒体文本数据的复杂性与多变性中,始终保持较高的准确性来识别抑郁倾向。:提取了六个统计特征,包括负面情感微博的比例、原创微博的比例、深夜发帖的比例、每周发帖频率、发帖时间的标准差和包含图片的微博比例。原创 2025-02-22 14:31:22 · 409 阅读 · 0 评论 -
DEMF模型赋能多模态图像融合,助力肺癌高效分类
维度创新点描述评估结果理论创新提出了一种新的多模态图像融合机制(PCAE),有效整合了PET和CT图像的特征。高度创新,为多模态影像融合提供了新的理论基础。方法创新开发了一种基于深度集成学习的分类器(DEMF),通过多数投票进行决策。高度创新,显著提高了分类的稳定性和准确性。应用创新该方法在有限样本的情况下表现出色,具有潜在的临床应用价值。高度创新,可扩展到其他疾病的检测和诊断中。可视化知识图谱。原创 2025-02-21 12:25:31 · 322 阅读 · 0 评论 -
多模态医学图像融合:照亮医学诊断的未来之路
多模态医学图像融合,简单来说,就是把不同类型的医学图像(比如MRI、CT、PET等)结合起来,生成一张更全面、更清晰的图像,帮助医生更好地诊断疾病。指的是多种不同的成像技术。:擅长显示软组织的细节,比如大脑、肌肉等。:能清晰地显示骨骼和血管结构。:可以显示身体的代谢活动,帮助发现肿瘤等病变。就是这些成像技术生成的图像,医生通过这些融合后的图像来观察和分析病人的身体状况。假设一个病人做了 MRI 和 PET 扫描。MRI 显示了一个肿瘤的形态和位置,PET 显示了肿瘤的代谢活动。原创 2025-02-11 11:21:15 · 259 阅读 · 0 评论 -
cv君独家视角|AI内幕系列二十八:杭州六小龙的独特魅力
AI 领域的技术迭代迅速,DeepSeek 需要不断创新以保持其大模型的领先地位;脑机接口技术涉及到复杂的生物学、医学与工程技术,强脑科技在产品研发与临床应用方面可能面临诸多技术难题与伦理问题;机器人行业面临着激烈的市场竞争与技术更新换代的压力,宇树科技和云深处科技需要持续投入研发以提升产品性能与竞争力,否则可能会被市场淘汰。这些企业的发展不仅依赖于自身的努力,还与外部环境密切相关。政策的支持、市场需求的变化、行业竞争格局的演变等都会对其产生重大影响。原创 2025-02-06 14:23:41 · 217 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列二十七:最新Mamba神经网络架构:从零构建与实战教学
Mamba 作为一种创新的序列建模框架,通过选择性状态空间和线性时间复杂性的设计,为长序列任务提供了一种高效且灵活的解决方案。本文通过详细的代码实现和理论分析,展示了 Mamba 的核心思想和技术细节。原创 2025-02-06 10:17:33 · 2176 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列二十六:精选目标检测2——mAP的概念
文章目录学习前言什么是TP、TN、FP、FN什么是Precision和Recall什么是mAP学习前言在Github上我们可以看到许多模型,他们都有mAP值的评价指标,如下图所示:这到底是个啥呢?我查了好久的资料……什么是TP、TN、FP、FNTP的英文全称为True Positives,其指的是被分配为正样本,而且分配对了的样本,代表的是被正确分类的正样本,。TN的英文全称为,其指的是被分配为负样本,而且分配对了的样本,代表的是被正确分类的负样本。FP的英文全称为False Positi原创 2021-03-20 14:37:16 · 27155 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列二十五:精选目标检测3——yolo1、yolo2、yolo3和SSD的网络结构汇总对比
学习前言各个网络的结构图与其实现代码 1、yolo1 2、yolo2 3、yolo3 4、SSD总结学习前言……最近在学习yolo1、yolo2和yolo3,事实上它们和SSD网络有一定的相似性,我准备汇总一下,看看有什么差别。各个网络的结构图与其实现代码1、yolo1在这里插入图片描述由图可见,其进行了二十多次卷积还有四次最大池化,其中3x3卷积用于提取特征,1x1卷积用于压缩特征,最后将图像压缩到7x7xfilter的大小,相当于将整个图像划分为7x7原创 2021-03-25 22:03:37 · 31685 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列二十四:精选目标检测1——IOU的概念与python实例
文章目录学习前言IOU的特点全部代码学习前言神经网络的应用还有许多,目标检测就是其中之一,目标检测中有一个很重要的概念便是IOU。什么是IOUIOU是一种评价目标检测器的一种指标。下图是一个示例:图中绿色框为实际框(好像不是很绿……),红色框为预测框,当我们需要判断两个框之间的关系时,需要用什么指标呢?此时便需要用到IOU。计算IOU的公式为:可以看到IOU是一个比值,即交并比。在分子部分,值为预测框和实际框之间的重叠区域;在分母部分,值为预测框和实际框所占有的总区域。交区域原创 2021-03-20 14:02:00 · 31302 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列二十三:【解读】声网 Agora音视频技术与AI方案解决
声网 Agora原创声明,cv调包侠 50+新增数据中心 300%全网带宽容量上涨 中国区支持百万大频道动态扩展能力 海外大频道扩容时间缩短50% 日分钟数超过6亿 支持 5G 网络下高清、大码率视频传输 移动端超分、感知视频编码、AI 降噪等新技术落地 岁月不待人,2019年,已经过去。 我们和你一样, 在通往实时互联网的路上狂奔,原创 2020-10-11 17:07:25 · 12349 阅读 · 3 评论 -
cv君独家视角 | AI内幕系列二十二:【最新更新】深度学习工具包 Openvino 2021发行版
深度学习工具包 Openvino 2021发行版介绍OpenVINO的英特尔发行版™ 工具箱:新版特性支持从边缘到云的深入学习推理。支持跨Intel加速器异构执行,使用通用API,用于英特尔CPU、英特尔集成图形、英特尔高斯和神经加速器、英特尔神经计算棒2、英特尔®视觉加速器设计(带英特尔Moviidius)™ VPUs。通过易于使用的CV函数库和预优化内核,加快上市时间。包括对CV标准的优化调用,包括OpenCV*和OpenCL™.版本1中的新内容和更改执行摘要2020年10月推出原创 2020-10-14 09:10:31 · 13685 阅读 · 1 评论 -
cv君独家视角 | AI内幕系列二十一:基于python的新型冠状肺炎患病人数预测
基于python的新型冠状肺炎患病人数预测前言:数据源 腾讯疫情实时追踪操作算法单一:二次指数平滑法(会因算法不同以及算法中参数alpha不同而导致误差)正在测试该算法中alpha的值及其对数据的拟合效果使用不同的算法对数据预测可能会存在偏差,请勿传谣!第一部分 效果展示与分析(被标题遮挡部分:参数alpha = 0.99 预测2/03日新冠患病人数为20025人)在这里解释一下...原创 2020-02-04 11:21:09 · 15362 阅读 · 9 评论 -
cv君独家视角 | AI内幕系列二十:距离你解决小样本/少数据难题,只差这篇文章
文章目录什么是小样本学习?小样本学习变体Zero-Shot Learning (ZSL)One-Shot和Few-Shot小样本学习方法数据级方法参数级方法Few-Show目标检测YOLOMAML小样本解决方法进阶总结如今,在使用数十亿张图像来解决特定任务方面,计算机可以做到超过人类。尽管如此,在现实世界中,很少能构建或找到包含这么多样本的数据集。我们如何克服这个问题? 在计算机视觉领域,我们可以使用数据增强 (DA),或者收集和标记额外的数据。DA 是一个强大的技术,可能是解决方案的重要组成部分。标原创 2021-06-26 23:06:52 · 13805 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列十九:仁兄,可曾听闻支持向量机?
仁兄,可曾听闻支持向量机?这是一篇机器学习算法——支持向量机(SVM)的原理篇,可能比较枯燥,但这正是大家在学习算法中必不可少的一步:忍受枯燥!感兴趣的同学,可以关注一下,这期先介绍原理,再慢慢的一步一步实践,到大家亲手用会SVM(小编也不是很熟,就当是一起学习的过程了~)(一)SVM的简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年...原创 2020-04-13 22:18:12 · 10756 阅读 · 6 评论 -
cv君独家视角 | AI内幕系列十八:一文全解梯度下降法
梯度下降通过寻找损失最小值,来学习到最优的模型参数w的过程梯度下降的4个核心要素:损失函数、参数起始点、梯度计算、学习率机器学习的常见任务是:通过学习算法,发现数据背后的规律,然后不断改正模型cana...原创 2022-01-13 13:25:15 · 14296 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列十七:视觉状态空间模型(VMamba)的解读
在计算机视觉领域,设计计算高效的网络架构一直是研究的热点。今天,我想和大家分享一篇发表在 NIPS 2024 上的论文——VMamba:Visual State Space Model,这篇论文提出了一种新的视觉骨干网络,具有线性时间复杂度,展现了在多种视觉感知任务中的出色表现。原创 2025-02-02 21:31:13 · 2050 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列十六:一文读懂 NeurIPS 条件卷积模块 CondConv:让模型涨点的秘密武器(附源码实践)
在深度学习的浪潮中,卷积神经网络(CNN)一直是图像处理领域的中流砥柱。然而,传统的卷积操作采用静态共享的卷积核,对不同输入样本“一视同仁”,这显然无法满足复杂多变的实际需求。今天,就带大家深入了解一种打破这一局限的创新技术 —— 条件卷积模块 CondConv,看看它是如何让模型性能实现飞跃的。原创 2025-02-02 19:40:25 · 1925 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列十五:全新的病理图像多类分割方法:PathMamba
论文提出了一种新颖的弱监督学习方法,仅使用图像级别的标签,通过多实例多标签学(MIML)和对比度掩码块(CMB)来探索组织病理学图像的像素级和区域级标准特征。该方法能够自适应地捕捉图像中的像素级特征,并利用深度对比学习损失更好地利用未标注的信息。实验结果表明,该框架在临床应用中具有有效的注释病理图像的潜力。原创 2025-01-06 19:15:18 · 2189 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列十四:【手机、相机防抖大揭秘】数字防抖、鸡头防抖、光学防抖、AI防抖等(附源码+长期更新)
【手机、相机防抖大揭秘】数字防抖、鸡头防抖、光学防抖、AI防抖等(附源码+长期更新)原创 2024-08-08 20:55:58 · 26720 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列十三:图像超分辨率技术新进展:混合注意力聚合变换器HAAT
在计算机视觉领域,单图像超分辨率(SISR)技术的目标是从一个低分辨率的图像中重建出高分辨率的图像。特别是,SwinIR利用Swin Transformer取得了显著的改进,而混合注意力变换器(HAT)通过结合重叠的交叉注意力模块、基于窗口的自注意力和通道注意力,也产生了最先进的结果。HAAT模型的提出是为了解决现有基于Transformer的方法在图像恢复问题上的局限性,尤其是当前基于窗口的Transformer网络将自注意力计算限制在集中区域,导致感受野受限并且无法充分利用原始图像的特征信息。原创 2024-12-07 12:54:55 · 2137 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列十二:利用raw图像实现真实场景的超分辨率的技术
总之,该方法提出了一种新的数据生成流程和双CNN架构,通过模拟数字相机成像过程和利用raw图像的辐射信息,有效地提高了真实场景下图像超分辨率的性能,并展示了raw数据在图像处理中的优越性。原创 2024-12-06 12:08:58 · 1942 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列十一:DP双像素sensor相关的AI算法全集:深度估计、图像去模糊去雨去雾恢复、图像重建、自动对焦
双像素是成像系统的感光元器件中单帧同时生成的图像:通过双像素可以实现:深度估计、图像去模糊去雨去雾恢复、图像重建成像原理来源如上,也有遮罩等方式的pd生成,如图双像素视图可以看到光圈的不同一半,这提供了一个深度提示。然而,由于基本的模糊性,如果相机的焦距(或光圈大小或焦距)发生变化,不同的场景可能会产生相同的双像素图像。在(a)中,具有焦距g1的相机在距离Z1处成像聚焦的蓝色点和离焦的橙色点。通过光圈左半部分折射的光(深蓝色和橙色光线)到达每个双像素的右半部分,反之亦然。这导致了一个双像素图像,其中失焦橙原创 2024-11-21 11:48:53 · 2893 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列十:PlainUSR框架:加速卷积网络的高效SR方法
图像超分辨率(SR)旨在从大量的低分辨率退化中恢复高分辨率图像的方法。随着深度学习技术的发展,基于卷积神经网络(ConvNet)的SR方法取得了显著的进展。然而,这些方法在提高图像质量的同时,往往伴随着计算成本的增加,这限制了它们在实时应用中的实用性。最近,一篇名为《PlainUSR: Chasing Faster ConvNet for EfficientSuper-Resolution》的论文,提出了一种新的框架,旨在提高SR的速度和效率,同时保持图像质量。原创 2024-11-20 18:38:26 · 2149 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列九:视频修复技术和实时在线处理
视频修复技术的目标是填补视频中的缺失部分,使视频内容连贯合理。这项技术在对象移除、视频修复和视频补全等领域有着广泛的应用。传统方法通常需要处理整个视频,导致处理速度慢,难以满足实时处理的需求。实验使用了三种基于Transformer的视频修复模型,并在两个广泛使用的视频修复数据集上进行。结果显示,新框架在保持实时处理速度的同时,减少了质量损失。此外,通过消融实验评估了模型中各个组件的重要性,结果表明双模型协作和记忆机制对提高帧率和质量都有积极作用。原创 2024-11-20 17:22:49 · 2893 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列八:NeRD-Rain(双向多尺度的Transformer模型)新方法实现图像去雨
目前大多数基于Transformer的方法都只关注单一尺度的雨迹特征,而要成功去除图像中的雨滴,理解雨线在不同尺度上的表现非常关键。,因此论文作者提出了一种全新的多尺度Transformer模型,它能同时捕捉到不同尺度下有助于图像恢复的特征。这种方法有助于重建出更高质量的无雨图像。为了深入挖掘雨线在空间上的变化并找到它们的共同特征,论文作者在模型设计中融合了基于像素位置的隐式神经表征,这有助于模型学习如何去除雨水并提高在复杂环境下的稳定性。原创 2024-10-24 18:30:55 · 2464 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列七:EfficientViT模型:基于多尺度线性注意力模块,实现高效的高分辨率密集预测
在头部设计方面,它使用了P2、P3和P4,它们分别代表第二、第三和第四阶段的输出结果,形成了一个特征图的金字塔结构。简而言之,EfficientViT的骨架结构是按常规设计的,通过逐渐减小特征图尺寸和增加通道数来构建,而在头部设计中,它通过构建特征金字塔并融合不同阶段的特征图,以及使用简单的MBConv块和输出层来完成预测和上采样。总的来说,EfficientViT模型通过这些精心设计的技术,能够在保持计算效率的同时,有效地处理高分辨率图像,捕捉到图像的全局和局部信息,从而在各种密集预测任务中表现出色。原创 2024-10-24 16:33:06 · 2013 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列六:Instruct-IPT方法实现去雨雪去雾等去噪去模糊功能
近年来,有一种叫做Transformer的技术在图像处理领域非常火,它在很多任务上都表现得很棒,比如给图片分类、找出图片里的目标或者把图片分成不同的部分。但是,这些Transformer模型通常只能做一件事,这对于我们想要同时处理多个问题时就不太方便了。为了解决这个问题,一些研究人员提出了一种叫做All-in-One的模型,这种模型可以同时处理多个图像恢复任务。但是,这些模型在处理范围和效果上都还有限制。比如,它们可能在处理一些相关性较高的任务时表现不错,但一旦遇到完全不同的任务,效果就不行了。原创 2024-10-23 17:00:00 · 1893 阅读 · 2 评论 -
cv君独家视角 | AI内幕系列五:深度学习在ISP中的的研究与进展
图像信号处理器(ISP)是数码相机中的关键组件,负责将原始图像数据转换为高质量的数字图像。传统的ISP流程依赖于硬件实现,包括去马赛克、去噪和白平衡等多个步骤,但这些步骤往往会导致信息损失和累积误差。近年来,深度学习技术,尤其是卷积神经网络(CNN),因其在图像处理中的卓越性能,被提出作为替代传统ISP流程的解决方案。本文章调查了最近的相关论文的研究进展,并对它们进行了更深入的分析和比较,探索了一些基于深度学习的 ISP 管道在计算效率和处理时间方面的改进策略。isp介绍图。原创 2024-10-23 10:20:00 · 1264 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列四:红外与可见光图像融合新突破:DAF-Net双分支特征融合网络
本文介绍的DAF-Net模型通过加入一种叫做MK-MMD的技术,在基础编码器中实现了全局特征的对齐,同时保留了不同模态的细节特征。实验结果显示,DAF-Net在多个数据集上表现出色,具有很好的融合效果和视觉质量。原创 2024-09-26 17:08:09 · 2637 阅读 · 3 评论 -
cv君独家视角 | AI内幕系列三:用扩散模型(Diffusion Model)生成新的训练数据的几种方法
扩散模型(Diffusion Model)是一种生成模型,用于生成新的数据样本。扩散模型的工作原理是迭代地向图像添加噪声,然后训练神经网络来学习噪声并去除噪声来还原原始图像。以下是扩散模型生成训练数据的步骤:初始化:模型以一个简单的数据分布开始,比如高斯分布,作为基础噪声。前向扩散过程:模型通过在数据中引入噪声,逐步将数据从其原始分布转变为一个复杂的噪声分布。这个过程模拟了物理扩散过程,逐渐掩盖数据的真实特征。生成训练数据:在前向扩散的每一步中,模型都学习如何记录数据从原始状态到噪声状态的转换。原创 2024-09-26 16:00:46 · 3632 阅读 · 0 评论 -
cv君独家视角 | AI内幕系列二:LORA微调,让大模型更平易近人
LORA 在ICLR2022中提出,是利用低秩适配(low-rankadaptation)的方法,可以在使用大模型适配下游任务时只需要训练少量的参数即可达到一个很好的效果。由于 GPU 内存的限制,在训练过程中更新模型权重成本高昂。例如,假设我们有一个 7B 参数的语言模型,用一个权重矩阵 W 表示。在反向传播期间,模型需要学习一个 ΔW 矩阵,旨在更新原始权重,让损失函数值最小。原创 2024-05-29 20:55:27 · 27009 阅读 · 0 评论