Deep Multi-task Learning for Depression Detection and Prediction in Longitudinal Data(多任务抑郁症检测)

该博客介绍了使用LSTM模型对来自theLongitudinalStudyofAustralianChild(LSAC)数据集的时序数据进行抑郁症分类的研究。输入为7x762的矩阵,包含了7次问卷调查的回答。通过LSTM处理时序信息,同时结合AnomalyRanking和One-classMetricLearning等多任务学习方法以增强模型泛化能力。研究发现,这种方法能有效处理时序数据并优于仅使用SVM的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:https://arxiv.org/pdf/2012.02950.pdf
模型:LSTM
输入:7x762的矩阵(7: 7次问卷调查, 762:1次问卷调查的所有答案concat在一起)
输出:分类结果(抑郁 or not)


数据集:the Longitudinal Study of Australian Child(LSAC)提出的数据集
包括7波问卷调查,每隔两年来一波,调查人群中一部分在第6、7波检查出抑郁,一部分正常
LSTM优点:能接收时序数据,相比SVM只能接收一波的数据
多任务:加了两个其他任务,目的是提高模型泛化性能,一个叫Anomaly Ranking,一个叫
One-class Metric Learning,有一定的参考价值

### 多模态Vlog数据集在机器学习中的应用 为了实现抑郁症检测,多模态Vlog数据集是一种重要的资源。这类数据集通常结合视频、音频和文本等多种模式的信息来捕捉用户的抑郁特征[^1]。具体来说,在神经网络翻译领域中提到的对比学习方法可以被扩展到多模态数据分析上,从而提升模型对于情绪状态的理解能力。 此外,针对多模态摘要生成的研究表明,通过构建分层跨模态语义相关学习模型能够有效提取不同媒体形式之间的深层次联系[^2]。这种方法同样适用于分析Vlog内容中的情感线索,帮助识别潜在的心理健康问题。 关于实际使用的数据划分策略方面,有研究指出可按照一定比例分配样本至训练集、验证集以及测试集中,并考虑加入额外属性比如性别作为辅助变量来进行更细致化的建模尝试[^3]。 以下是Python代码片段展示如何加载并初步处理此类数据: ```python import pandas as pd # 假设CSV文件包含了vlog的相关信息 data = pd.read_csv('multimodal_vlogs.csv') # 查看前几行数据结构 print(data.head()) # 数据分割示例 (假设已知标签列名为'label') from sklearn.model_selection import train_test_split train_data, temp_data, train_labels, temp_labels = train_test_split( data.drop(columns=['label']), data['label'], test_size=0.3, random_state=42) val_data, test_data, val_labels, test_labels = train_test_split( temp_data, temp_labels, test_size=(2/3), random_state=42) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值