二手车交易价格预测:特征工程

本文探讨了二手车交易价格预测中特征工程的重要性,包括异常值处理(如删除异常值)、数据分桶、特征构造(如时间特征、统计量特征、地理信息编码)和特征筛选(过滤式、包裹式、嵌入式)。文中举例说明了如何删除异常值,以及特征分桶的动机,强调了特征离散化对模型稳定性和表达能力的提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先解决下第一篇博客中遗留的小问题:
“打印结果时,由于行数太多,中间省略号的数据如何让查看?”
pandas.set_option() 可以设置pandas相关的参数,从而改变默认参数。 打印pandas数据时,默认是输出100行,多的话会输出…省略号。
可加入下面的代码解决

#显示所有列
pd.set_option('display.max_columns', None)
#显示所有行
pd.set_option('display.max_rows', None)
#显示宽度是无限
pd.set_option('display.width', None)

就可以查看全部数据啦~
在这里插入图片描述

接下来正式学习特征工程:

1.学习内容

常见的特征工程包括ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值