POJ3009 dfs

20 篇文章 3 订阅

题意:

给一个图,1表示石头,2表示出发点,3表示终点,求从2到3的最短步数。
有特殊条件就是在没有遇到1之前,只能一个方向走,遇到1之后1变为零,
然后可以在之前的状态向四个方向走。

思路:

1.dfs重要的是入口和出口的控制条件。
2.想好一个位置的状态以及怎么处理它。

#include<cstdio>

int n,m;
int gragh[30][30];
int sx,sy,ex,ey,ans;
int dir[4][2] = {{1,0},{-1,0},{0,1},{0,-1}};

void dfs(int x,int y,int step)
{
    if(step > 10)       //控制好入口和出口
        return ;
    for(int i = 0;i < 4; i++){
        int xx = x + dir[i][0];
        int yy = y + dir[i][1];
        int tx = x,ty = y;      //这里很简妙,保留撞到石头的之前位置
        while( xx >= 1 && xx <= n && yy >= 1 && yy <= m && gragh[xx][yy] != 1){
            tx += dir[i][0];
            ty += dir[i][1];
            if(xx == ex && yy == ey && step < ans){ //出口条件
                ans = step;
                return ;
            }
            xx += dir[i][0];        //在一个方向上连续的走
            yy += dir[i][1];
            if(xx < 1 || xx > n || yy < 1 || yy > m)
                break;
            if(gragh[xx][yy] == 1){
                gragh[xx][yy] = 0;
                dfs(tx,ty,step + 1);
                gragh[xx][yy] = 1;
            }
        }
    }
}

int main()
{
    //freopen("in.txt","r",stdin);
    while(scanf("%d%d",&m,&n) != EOF){
        if(n == 0 && m == 0)
            break;
        for(int i = 1;i <= n; i++){
            for(int j = 1;j <= m; j++){
                scanf("%d",&gragh[i][j]);
                if(gragh[i][j] == 2){
                    sx = i;
                    sy = j;
                }
                else if(gragh[i][j] == 3){
                    ex = i;
                    ey = j;
                }
            }
        }
        ans = 0x3f3f3f3f;
        //gragh[sx][sy] = 0;
        dfs(sx,sy,1);
        if(ans == 0x3f3f3f3f)
            printf("-1\n");
        else
            printf("%d\n",ans);
    }
    return 0;
}

当然也可以这样!

#include<cstdio>

int n,m;
int gragh[30][30];
int sx,sy,ex,ey,ans;
int dir[4][2] = {{1,0},{-1,0},{0,1},{0,-1}};

void dfs(int x,int y,int step)
{
    if(step > 10)       //控制好入口和出口
        return ;
    for(int i = 0;i < 4; i++){
        int xx = x + dir[i][0];
        int yy = y + dir[i][1];
        while( xx >= 1 && xx <= n && yy >= 1 && yy <= m && gragh[xx][yy] != 1){
            if(xx == ex && yy == ey && step < ans){ //出口条件
                ans = step;
                return ;
            }
            xx += dir[i][0];        //在一个方向上连续的走
            yy += dir[i][1];
            if(xx < 1 || xx > n || yy < 1 || yy > m)
                break;
            if(gragh[xx][yy] == 1){
                gragh[xx][yy] = 0;
                dfs(xx-dir[i][0],yy - dir[i][1],step + 1);
                gragh[xx][yy] = 1;
            }
        }
    }
}

int main()
{
    //freopen("in.txt","r",stdin);
    while(scanf("%d%d",&m,&n) != EOF){
        if(n == 0 && m == 0)
            break;
        for(int i = 1;i <= n; i++){
            for(int j = 1;j <= m; j++){
                scanf("%d",&gragh[i][j]);
                if(gragh[i][j] == 2){
                    sx = i;
                    sy = j;
                }
                else if(gragh[i][j] == 3){
                    ex = i;
                    ey = j;
                }
            }
        }
        ans = 0x3f3f3f3f;
        //gragh[sx][sy] = 0;
        dfs(sx,sy,1);
        if(ans == 0x3f3f3f3f)
            printf("-1\n");
        else
            printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值