思路:
一开始联想到了以前的整数划分问题,想了很久之后发现是不同的,这里求的是不同
数字组成的整数问题。
所以。。。不会了
看了大神的思路之后才发现还有这种操作!!!
我们把dp[i][j]看作整数i的划分为j个不同的数字情况。
那么怎么推出目标呢?
dp[i][j]可以看作有1组成的和无1组成的那么就是dp[i][j] = dp[i-j][j] + dp[i-j][j-1]
前者理解为从i-j的数字划分为j个不同的数字,那么如果想到达i只需每一个数字加1既
可,因此这是没有出现1的情况,同理后者是数字i-j划分为j-1个数字,我们把每一个
加1之后再加上最后的1就是dp[i][j]。
#include <iostream>
#include <cstdio>
using namespace std;
const int maxn = 50005;
const int mod = 1e9+7;
int n;
int dp[maxn][400];
int main()
{
//freopen("in.txt","r",stdin);
scanf("%d",&n);
dp[0][0] = 1;
for(int i = 1;i <= n; i++) {
for(int j = 1;j*j <= i*2; j++) {
dp[i][j] = (dp[i-j][j]+dp[i-j][j-1])%mod;
}
}
int ans = 0;
for(int i = 1;i <= n; i++) {
ans += dp[n][i];
ans %= mod;
}
printf("%d\n",ans);
return 0;
}