树形DP + prim
题意:
有n个寝室,现在准备安装空调,但是线路比较老化,需要安装新的线路,每米的线路花费为m,给出n个寝的坐标,求出需要的最小花费,但是现在有一个问题,就是求出的最短的路径和其中有一条是不可以用的,但是也不知道是哪一条,但是与第一个寝室相连的路径可以用,为了确保安装进行至少需要多少钱?:
思路:
转化一下问题,求出最小生成树之后,除了与第一个节点相连接的路径,其它都有可能需要替换,所以问题就是求出其余路径被替换之后的最小生成树的最大值,这样才能确保空调可以安全安装。
那么这道题就很好办了:
1. prim求出最小生成树
2. 找出每一条路径的替换路径
3. 遍历找出答案
- 注意树形DP的目的是什么,结合dfs的特性可以获得答案,此题与HDU 4126 基本相同
#include <iostream>
#include <cstdio>
#include <cstring>
#include <math.h>
using namespace std;
const int maxn = 1010;
const int inf = 0x3f3f3f3f;
int n,m;
double mst,ans;
double map[maxn][maxn],dis[maxn],dp[maxn][maxn];
int pre[maxn],vis[maxn];
int flag[maxn][maxn];
struct Coor
{
int x,y;
}coor[maxn];
struct Node
{
int e,next;
}edge[maxn*2];
int head[maxn],pos;
double Dis(int x1,int y1,int x2,int y2)
{
return sqrt(1.0*(x1-x2)*(x1-x2) + 1.0*(y1-y2)*(y1-y2));
}
void inputAndinit()
{
pos = 0;
for(int i = 0;i < n; i++)
scanf("%d%d",&coor[i].x,&coor[i].y);
for(int i = 0;i < n; i++) {
head[i] = -1;
for(int j = i;j < n; j++) {
dp[i][j] = dp[j][i] = inf;
flag[i][j] = flag[j][i] = 0;
if(i == j) map[i][i] = 0;
else
map[i][j] = map[j][i] = Dis(coor[i].x,coor[i].y,coor[j].x,coor[j].y);
}
}
}
void prim()
{
for(int i = 0;i < n; i++) {
pre[i] = 0;
vis[i] = 0;
dis[i] = map[0][i];
}
dis[0] = inf; //不可缺少
pre[0] = -1;
vis[0] = true;
mst = 0;
for(int i = 0;i < n-1; i++) {
int k = 0;
for(int j = 0;j < n; j++) {
if(!vis[j] && dis[k] > dis[j])
k = j;
}
mst += dis[k];
vis[k] = true;
if(pre[k] != -1) {
edge[pos].e = k;
edge[pos].next = head[pre[k]];
head[pre[k]] = pos++;
edge[pos].e = pre[k];
edge[pos].next = head[k];
head[k] = pos++;
flag[k][pre[k]] = flag[pre[k]][k] = true;
}
for(int j = 0;j < n; j++) {
if(!vis[j] && dis[j] > map[k][j]) {
dis[j] = map[k][j];
pre[j] = k;
}
}
}
}
double dfs(int pos,int u,int fa)
{
double ans = inf;
for(int i = head[u];i != -1; i = edge[i].next) {
int to = edge[i].e;
if(to == fa) continue;
double temp = dfs(pos,to,u);
dp[u][to] = dp[to][u] = min(dp[u][to],temp);
ans = min(ans,temp);
}
if(pos != fa) ans = min(ans,map[pos][u]);
return ans;
}
void solve()
{
for(int i = 0;i < n; i++) {
dfs(i,i,-1);
}
}
void output()
{
double ans = mst;
for(int i = 1;i < n; i++) {
for(int j = i+1;j < n; j++) {
if(flag[i][j]) {
ans = max(ans,mst - map[i][j] + dp[i][j]);
}
}
}
printf("%.2f\n",ans*m);
}
int main(int argc, char const *argv[])
{
//freopen("in.txt","r",stdin);
int tt;
scanf("%d",&tt);
while(tt--) {
scanf("%d%d",&n,&m);
inputAndinit();
prim();
solve();
output();
}
return 0;
}