UVA1484 树形DP + 最优值选择

8 篇文章 0 订阅

树形DP + 最优值选择

题意:

​ 两个人相约去旅游,有n个地方,其边和点组成一个树,现在要从0节点出发,bob和Alice轮流选择走的方向,Bob先选择,他总是选择大的,Alice总是选择小的,总路程要在一个区间里面,问最优解是多少?

思路:

​ 因为树是固定的,其实每一层的选择也就是也是可以确定的,不确定的是有些路会超过范围,用dp保存即可。

​ 定义: dp[u][0/1] 表示到节点u 的最大值,0代表Bob选择,1代表Alice选择。

  • 那只需要遍历每一条路即可,当选择这条路的时候其实值可以确定,所以需要判断一下取最优值,当然dfs中最后的结果一定到达了最后的叶子节点,不满足就输出字符串。

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

const int maxn = 500005;
const int inf = 0x3f3f3f3f;

int n,l,r;
int dp[maxn][2];
int head[maxn],pos;

struct Node
{
    int e,v;
    int next;
}edge[maxn];

void init()
{
    pos = 0;
    memset(head,-1,sizeof(head));
}

void input()
{
    for(int i = 0;i < n-1; i++) {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        edge[pos].e = b;
        edge[pos].v = c;
        edge[pos].next = head[a];
        head[a] = pos++;
    }
}

int judge(int x)
{
    return (x >= l && x <= r);
}

void dfs(int u,int value)
{
    dp[u][0] = 0;
    dp[u][1] = (head[u] == -1 ? 0 : inf);
    for(int i = head[u];i != -1; i = edge[i].next) {
        int to = edge[i].e;
        dfs(to,value + edge[i].v);
        if(judge(value + edge[i].v + dp[to][1])) {
            dp[u][0] = max(dp[u][0],dp[to][1] + edge[i].v);
        }
        if(judge(value + edge[i].v + dp[to][0])) {
            dp[u][1] = min(dp[u][1],dp[to][0] + edge[i].v);
        }
    }
}

int main(int argc, char const *argv[])
{
    //freopen("in.txt","r",stdin);
    while(scanf("%d%d%d",&n,&l,&r) != EOF) {
        init();
        input();
        dfs(0,0);
        if(dp[0][0] == 0) {
            printf("Oh, my god!\n");
        }
        else 
            printf("%d\n",dp[0][0]);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值