HDU 5067 状态压缩DP + TSP

89 篇文章 1 订阅

状态压缩DP + TSP

题意:

​ 有 nm 的地图,地图上有一些石头,现在需要用最短的时间去到达这些石头,单位距离所花费的时间为1.

思路:

​ 单单去看原题是具有迷惑性质的,讲了很多乱七八糟的,所以在看题的时候需要抽象化问题,这道题因为清理石头不花费时间,而费时间的是如何到达所有石头才最快,也就是距离最短,经典的TSP问题,而石头的位置不超过10个,所以可以把石头的状态压缩在数字中,state为当前已经到达过的位置,now为当前的位置,其DP状态为: dp[state][now] 接下来需要多少时间去到达所有位置,很明显,要求的是: dp[0][0] ,而 dp[(1<<pos)1][0]=0 ,其中pos 为石头位置的个数。

​ 如何寻找最短的距离呢?通过当前的状态去向没有达到的位置去遍历,保存最小的值便是结果。

​ 实现的方法有两种:dfs容易理解,直接循环dp也很方便,

​ dfs就是寻找达到此状态的最小值,而循环dp是暴力枚举当前状态所有可能达到的状态的最小值。-

  • 两种方法。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;

const int maxn = (1<<11) + 10;
const int inf = 0x3f3f3f3f;

int n,m;
int dp[maxn][15];
int dx[15],dy[15],pos;

int dfs(int state,int now)
{
    if(state == (1<<pos)-1 && now == 0) return 0;
    if(dp[state][now] != -1) return dp[state][now];
    int ans = inf;
    for(int i = 0;i < pos; i++) {
        if(state&(1<<i)) continue;
        int dis = abs(dx[now]-dx[i]) + abs(dy[now]-dy[i]);
        ans = min(ans,dfs(state|(1<<i),i) + dis);
    }
    return dp[state][now] = ans;
}

int DP()
{
    dp[(1<<pos)-1][0] = 0;
    for(int S = (1<<pos)-1;S >= 0; S--) {
        for(int i = 0;i < pos; i++) {
            for(int j = 0;j < pos; j++) {
                if(S&(1<<j)) continue;
                int dis = abs(dx[i]-dx[j]) + abs(dy[i]-dy[j]);  
                dp[S][i] = min(dp[S][i],dp[S|(1<<j)][j] + dis);
            }
        }
    }
}

int main(int argc, char const *argv[])
{
    freopen("in.txt","r",stdin);

    while(scanf("%d%d",&n,&m) != EOF) {
        pos = 1;
        for(int i = 0;i < n; i++) {
            for(int j = 0;j < m; j++) {
                int a;
                scanf("%d",&a);
                if(a) {
                    dx[pos] = i;
                    dy[pos++] = j;
                }
            }
        }
        /*memset(dp,-1,sizeof(dp));
        printf("%d\n",dfs(0,0));*/
        memset(dp,inf,sizeof(dp));
        DP();
        printf("%d\n",dp[0][0]);    
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值