状态压缩DP + TSP
题意:
有 n∗m 的地图,地图上有一些石头,现在需要用最短的时间去到达这些石头,单位距离所花费的时间为1.
思路:
单单去看原题是具有迷惑性质的,讲了很多乱七八糟的,所以在看题的时候需要抽象化问题,这道题因为清理石头不花费时间,而费时间的是如何到达所有石头才最快,也就是距离最短,经典的TSP问题,而石头的位置不超过10个,所以可以把石头的状态压缩在数字中,state为当前已经到达过的位置,now为当前的位置,其DP状态为: dp[state][now] 接下来需要多少时间去到达所有位置,很明显,要求的是: dp[0][0] ,而 dp[(1<<pos)−1][0]=0 ,其中pos 为石头位置的个数。
如何寻找最短的距离呢?通过当前的状态去向没有达到的位置去遍历,保存最小的值便是结果。
实现的方法有两种:dfs容易理解,直接循环dp也很方便,
dfs就是寻找达到此状态的最小值,而循环dp是暴力枚举当前状态所有可能达到的状态的最小值。-
- 两种方法。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = (1<<11) + 10;
const int inf = 0x3f3f3f3f;
int n,m;
int dp[maxn][15];
int dx[15],dy[15],pos;
int dfs(int state,int now)
{
if(state == (1<<pos)-1 && now == 0) return 0;
if(dp[state][now] != -1) return dp[state][now];
int ans = inf;
for(int i = 0;i < pos; i++) {
if(state&(1<<i)) continue;
int dis = abs(dx[now]-dx[i]) + abs(dy[now]-dy[i]);
ans = min(ans,dfs(state|(1<<i),i) + dis);
}
return dp[state][now] = ans;
}
int DP()
{
dp[(1<<pos)-1][0] = 0;
for(int S = (1<<pos)-1;S >= 0; S--) {
for(int i = 0;i < pos; i++) {
for(int j = 0;j < pos; j++) {
if(S&(1<<j)) continue;
int dis = abs(dx[i]-dx[j]) + abs(dy[i]-dy[j]);
dp[S][i] = min(dp[S][i],dp[S|(1<<j)][j] + dis);
}
}
}
}
int main(int argc, char const *argv[])
{
freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&m) != EOF) {
pos = 1;
for(int i = 0;i < n; i++) {
for(int j = 0;j < m; j++) {
int a;
scanf("%d",&a);
if(a) {
dx[pos] = i;
dy[pos++] = j;
}
}
}
/*memset(dp,-1,sizeof(dp));
printf("%d\n",dfs(0,0));*/
memset(dp,inf,sizeof(dp));
DP();
printf("%d\n",dp[0][0]);
}
return 0;
}