高一学的排序算法,在大三可以说是忘记得只剩下一小半了,所以决定复习一下。全文是学习leetbook《排序算法全解析》做的笔记,所以框架结构会按照这本书来,该书链接如下:
https://leetcode-cn.com/leetbook/detail/sort-algorithms/
O
(
n
2
)
O(n^2)
O(n2)
1.冒泡排序:
最常见的:n次循环,每次循环都寻找不符合顺序的两个相邻元素进行交换
#include<cstdio>
#include<iostream>
using namespace std;
int main()
{
const int Maxn=100;
int a[Maxn+5]={5,4,3,2,1};
for(int i=0;i<Maxn;i++)
for(int j=1;j<Maxn;j++)
if(a[j-1]>a[j])//这种写法是稳定的
swap(a[j-1],a[j]);
/*for(int i=0;i<Maxn;i++)
cout<<a[i]<<endl;
*/
getchar();
return 0;
}
还可优化,如某次循环未进行交换则退出(此优化可使冒泡排序最优时 O ( n ) O(n) O(n),还可进一步优化使每次循环只进行到上次最后一次交换发生的位置(此时后面是最大/最小且有序的数)。
2.选择排序
这个名字还挺容易和插入排序弄混的…选择排序最经典的做法就是n次遍历,每次找到第i小的数并且和第i位交换。在不另开数组增加开销的情况下,选择排序是不稳定的(如果我每次选最前面的最小的,为什么会不稳定呢?因为不稳定主要是在交换的过程中产生的)
for(int i=0;i<Maxn;i++)
{
int pos=i;
for(int j=i;j<Maxn;j++)
if(a[pos]>a[j])
pos=j;
swap(a[pos],a[i]);
}
此算法可以优化为二元选择排序,每次记录一个max_index一个min_index,可以一定程度上优化常数(i,j的变化范围小了)。需要注意两次swap中,后一次的位置在前一次swap中有可能改变了位置。
3.插入排序,n次循环,每次把当前位置数字(第一个无序数字)插入到前面有序数字中的合适位置。
for(int i=1;i<Maxn;i++)
{
int num=a[i];
int j=i-1;
for(;j>=-1;j--)
if(j>=0&&num<a[j])//这种写法是稳定的
a[j+1]=a[j];
else break;
a[j+1]=num;
}
这里的交换方式也可以换成类似冒泡的swap方式,逐渐换到合适的位置,但swap需要三次赋值,常数会更大一些。
三种
O
(
n
2
)
O(n^2)
O(n2)级别算法的比较