题目描述 Description
A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。
输入描述 Input Description
第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道路。
接下来 m 行每行 3 个整数 x、y、z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意:x 不等于 y,两座城市之间可能有多条道路。
接下来一行有一个整数 q,表示有 q 辆货车需要运货。
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y。
输出描述 Output Description
输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出-1。
样例输入 Sample Input
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
样例输出 Sample Output
3
-1
3
数据范围及提示 Data Size & Hint
对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q < 1,000;
对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q < 1,000;
对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q < 30,000,0 ≤ z ≤ 100,000。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=1e4+5;
int used[maxn],fr[maxn*2],tov[maxn*2],des[maxn*2],wor[maxn][15],f[maxn][15],fath[maxn];
int n,m,q,sta,fin,cnt,dep[maxn],w[maxn*2];
struct node
{
int sta,fin,wor;
}roa[5*maxn];
bool cmp(node x,node y)
{
return x.wor>y.wor;
}
int fa(int u){
return fath[u]=(fath[u]==u?u:fa(fath[u]));
}
void dfs(int u,int ste,int whe)
{
used[u]=1;dep[u]=ste;
for(int i=fr[u];i;i=tov[i])if(des[i]!=whe){
wor[des[i]][0]=w[i];
f[des[i]][0]=u;
dfs(des[i],ste+1,u);
}
}
void init()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d %d %d",&roa[i].sta,&roa[i].fin,&roa[i].wor);
sort(roa+1,roa+m+1,cmp);
for(int i=1;i<=n;i++)fath[i]=i;
for(int i=1;i<=m;i++){
if(cnt/2==n-1)break;
if(fa(roa[i].sta)==fa(roa[i].fin))continue;
fath[fath[roa[i].sta]]=fath[roa[i].fin];
tov[++cnt]=fr[roa[i].sta];fr[roa[i].sta]=cnt;
des[cnt]=roa[i].fin;w[cnt]=roa[i].wor;
tov[++cnt]=fr[roa[i].fin];fr[roa[i].fin]=cnt;
des[cnt]=roa[i].sta;w[cnt]=roa[i].wor;
}
for(int i=1;i<=n;i++)if(!used[i])dfs(i,1,0);
for(int i=1;i<=14;i++)for(int j=1;j<=n;j++){
f[j][i]=f[f[j][i-1]][i-1];
wor[j][i]=min(wor[j][i-1],wor[f[j][i-1]][i-1]);
}
}
int poww(int tmp)
{
int tmp2=1;
for(int i=1;i<=tmp;i++)tmp2*=2;
return tmp2;
}
int query()
{
if(fa(sta)!=fa(fin))return -1;
int mini=2e9,f1=dep[sta],f2=dep[fin];
if(f1<f2)swap(f1,f2),swap(sta,fin);
int lef=f1-f2;
while(lef){
int tmp=floor(log(lef)/log(2));
mini=min(mini,wor[sta][tmp]);
sta=f[sta][tmp];
lef-=poww(tmp);
}
/*for(int i=0;i<=14;i++)//使两个点深度相同
{
if(1<<i&lef)//位运算
{
mini=min(mini,wor[sta][i]);
sta=f[sta][i];
}
} */
if(sta==fin)return mini;
for(int i=14;i>=0;i--){
if(f[sta][i]==f[fin][i])continue;
mini=min(mini,min(wor[sta][i],wor[fin][i]));
sta=f[sta][i];
fin=f[fin][i];
}
mini=min(mini,min(wor[sta][0],wor[fin][0]));
return mini;
}
void work()
{
scanf("%d",&q);
for(int i=1;i<=q;i++){
scanf("%d %d",&sta,&fin);
printf("%d\n",query());
}
}
int main()
{
freopen("codevs3287.in","r",stdin);
freopen("codevs3287.out","w",stdout);
init();
work();
return 0;
}
省略的是另一种写法,之前WA了好久…因为没有走到0,这里要把诸如8这种2的次幂填满,0要选两次啊QAQ