二分图匹配——匈牙利算法

先上几个概念:
二分图:
二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。如下图:
1
最大匹配:
在G的一个子图M中,M的边集中的任意两条边都不依附于同一个顶点,则称M是一个匹配。选择这样的边数最大的子集称为图的最大匹配问题,最大匹配的边数称为最大匹配数;

完全匹配:
如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配。

增广路径:
若P是图G中一条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径(举例来说,有A、B集合,增广路由A中一个点通向B中一个点,再由B中这个点通向A中一个点……交替进行)。

由增广路的定义可以推出下述五个结论:
1-P的路径长度必定为奇数,第一条边和最后一条边都不属于M。
2-不断寻找增广路可以得到一个更大的匹配M’,直到找不到更多的增广路。
3-M为G的最大匹配当且仅当不存在M的增广路径。
4-最大匹配数M+最大独立数N=总的结点数
5 – 二分图的最小路径覆盖数 = 原图点数 - 最大匹配数
增广路主要应用于匈牙利算法中,用于求二分图最大匹配。

匈牙利算法:
找上图的最大匹配:
首先A直接与a匹配;
2然后在匹配B;
发现B与a匹配,但是A已经匹配过a了,此时撤掉A-a,将A重新匹配,发现A匹配了c;
3接着B就匹配上a;4再匹配C,C与a匹配,但已有B-a;此时先撤掉B-a,重新匹配B,结果B无法重新匹配,所以B-a不能撤去,然后C又可以匹配b,且b未匹配,此时匹配C-b;
5接着匹配D,D与c可以匹配,但是已有A-c;撤掉A-c,重新匹配A;得到A的新匹配对象d,匹配A-d;
然后接着匹配D-c;
6在匹配E,此时发现E无法再匹配,算法结束;

经过上面的过程,可以很容易的看出匈牙利算法的思想特点:
有坑就先占下,没坑,让前边的人挪一个坑;

代码实现:

int nx, ny;//x, y集合的点的数量;
int cx[1010], cy[1010];
//cx[i]=j: x集合中的i与y集合中的j匹配;
//cx[j]=i: y集合中的j与x集合中的i匹配;
int vis[1010];//标记集合中的点是否匹配过;
int edge[1010][1010];//相邻点的关系;
bool dfs(int u)//匹配x集合中的点u;
{
	for(int v=1; v<=ny; v++){
		if(!vis[v] && edge[u][v]){
			vis[v]=1;
			if(cy[v]==-1 || dfs(cy[v]))//有坑或者可以腾出一个坑; 
			{
				cy[v]=u;
				cx[u]=v;
				return true;
			}
		}
	}
	return false;
} 
int max_match(){
	int res=0;
	memset(cx, -1, sizeof(cx));
	memset(cy, -1, sizeof(cy));
	for(int i=1; i<=nx; i++){
		memset(vis, 0, sizeof(vis));//每匹配一个点都要初始化vis数组;
		if(dfs(i)) res++; 
	}
	return res;//返回最大匹配边数; 
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值