二分匹配算法

二分图及其应用(Bipartite Graph)

什么是二分图?

如果一个图的顶点可以分成两个集合X和Y,图的所有边一定是有一个顶点属于集合X,另一个顶点属于集合Y,则称该图为”二分图”或“二部图”。

典型问题,婚配问题

二分图如图所示:

 

二分图的最大匹配

在二分图的应用中,最常见的就是求——最大匹配,很多其他的问题都可以转化为匹配问题来解决。

那么我们如何求二分图的最大匹配呢?

下面介绍一个算法:匈牙利算法

匈牙利算法示意图 1:

 匈牙利算法示意图 2:

匈牙利算法示意图 3:

匈牙利算法示意图 4: 

最小顶点覆盖

在二分图中求最少的点,让每条边都至少和其中的一个点关联,这就是:二分图的“最小顶点覆盖”。

一句话记忆:最小顶点覆盖就是用最少的点覆盖所有的边。

 

总结:

二分图的最小顶点覆盖数 == 二分图的最大匹配数

关键点:求二分图的最大匹配数。

DAG(有向无环图)最小路径覆盖

用尽量少的不相交简单路径覆盖有向无环图(DAG)的所有顶点,这就是——DAG图的最小路径覆盖问题

一句话记忆:

最小路径覆盖就是用最少的路覆盖所有的点。

DAG图的最小路径覆盖数=节点数(n)-最大匹配数(m)

关键:求二分图的最大匹配数

二分图的最大独立集

二分图的最大独立集数=节点数(n)-最大匹配数(m)

关键:求二分图的最大匹配数

 

下面我们来看一道题目:任务安排

 

解题代码

// 二分匹配匈牙利算法的DFS实现
// 邻接矩阵形式
// uN是匹配左边的顶点数
// vN是匹配右边的定点数
// 优点:适用于稠密图 
// 优点:实现简洁易于理解
// 时间复杂度:O(VE)
// 顶点编号从0开始的
// 调用:res=hungary();
// 输出最大匹配数 

#include<bits/stdc++.h>
using namespace std;

const int MAXN = 510;
int uN,vN; // u,v的数目
int g[MAXN][MAXN]; // 邻接矩阵
int linker[MAXN]; // 存右点对象
bool used[MAXN]; // 右点访问否
bool dfs(int u)
{
	for(int v=0;v<vN;v++)
		if(g[u][v] && !used[v])
		{
			used[v] = true;
			if(linker[v]==-1 || dfs(linker[v]))
			{
				linker[v]=u;
				return true;
			}
		}
		return false; // 这一句容易忘记 
}

int hungary()
{
	int res=0;
	memset(linker,-1,sizeof(linker));
	for(int u=0;u<uN;u++)
	{
		memset(used,false,sizeof(used));
		if(dfs(u))
			res++;
	}
	return res;
 }
 
 int main()
 {
 	int k;
 	while(scanf("%d",&uN)==1 && uN)
 	{
 		cin>>vN>>k;
 		memset(g,0,sizeof(g));
 		int id,u,v;
 		while(k--)
 		{
 			cin>>id>>u>>v;
 			if(u!=0 && v!=0)
 				g[u][v]=1;
		}
		cout<<hungary()<<endl;
	}
	return 0;
 }

运行结果

 

总结

什么是二分图

二分图的最大匹配

匈牙利算法

二分图的最小顶点覆盖

DAG图的最小路径覆盖

二分图的最大独立集

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值