辗转相除法——求最大公约数

此问题虽然简单,但由于涉及到部分数学内容,却也十分烧脑,下面博主解决该问题将采用一种方法——辗转相除法。

两个数的最大公约数等于其中较小的数字和二者之间余数的最大公约数,这就是辗转相除法,为了更便于理解,我们用式子来表示以下

所谓辗转相除法,就是当要求a,b两个数的最大公约数时,如果c=a%b!=0时,我们便使用b%c来获得新的d,若此刻d=0,c便是a,b最大公约数,若不为0,便接着使用c%d获得新的余数,直到余数为0后,我们便得到了最大公约数;

如:

在明白了这点后,我们便可以试着使用代码来实现该功能了

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小六学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值