【数论】青蛙的约会(求解线性同余方程)

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4

思路分析:

经典的求解线性同余的题目。
设它们跳了t次,可以列出方程 (m-n)t %L = (y-x) %L
这其实就是ax+by=c. a = m-n, c = y-x, b = l, 然后求解线性同余。
下面先上求解线性同余方程的步骤:(无法上传竖着的图片,这就有点尴尬了)
在这里插入图片描述
下面上AC代码:

#include <iostream>
#define ll long long
using namespace std;

ll exgcd(ll a, ll b, ll &x, ll &y)	//扩展欧几里得 
{
	if(b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	ll q = exgcd(b, a%b, x, y);
	ll tmp = x;
	x = y;
	y = tmp - (a/b)*y;
	return q;
}

int main()
{
	ll x, y, m, n, l, x0, y0;
	cin>>x>>y>>m>>n>>l;
	ll a = m-n, c = y-x, b = l;	
	if(a < 0) a = -a, c = -c; //解决a为负的情况
	ll d = exgcd(a,b,x0,y0);
	if(c%d != 0) cout<<"Impossible"<<endl;
	else
	{
		ll X = c/d*x0;	//X为通解
		ll r = b/d;
		ll ans = (X%r+r)%r;	//求最小整数解
		cout<<ans<<endl;
	}
	return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
同余方程数论中常见的问题,欧拉定理是求解同余方程的一种重要方法。假设a、m是正整数,且它们互质,即gcd(a,m)=1,则欧拉定理表示:a^(φ(m)) ≡ 1 (mod m),其中φ(m)表示小于等于m的正整数中与m互质的数的个数(欧拉函数)。这个公式可以用来求解同余方程a^x ≡ b (mod m)。 具体步骤如下: 1. 求出φ(m)的值。如果m是质数,则φ(m)=m-1;如果m不是质数,则φ(m)=m×(1-1/p1)×(1-1/p2)×...×(1-1/pn),其中p1、p2、...、pn是m的所有质因数。 2. 判断a和m是否互质,如果不互质则无解,如果互质则继续。 3. 利用欧拉定理,求出a^(φ(m))的余数r。 4. 如果b不等于r,则无解;如果b等于r,则设x=k×φ(m)+j,其中k为非负整数,j为0到φ(m)-1之间的整数。则a^x ≡ a^(k×φ(m))×a^j ≡ (a^(φ(m)))^k × a^j ≡ 1^k × b ≡ b (mod m)。 因此,同余方程a^x ≡ b (mod m)的解为x=k×φ(m)+j,其中k为非负整数,j为0到φ(m)-1之间的整数。 例如,假设要解同余方程2^x ≡ 5 (mod 17),则φ(17)=16,2和17互质,因此2^(φ(17)) ≡ 1 (mod 17),即2^16 ≡ 1 (mod 17)。因此,2^x ≡ 5 (mod 17)的解为x=k×φ(17)+j,其中k为非负整数,j为0到15之间的整数。将2^x在模17意义下的余数列出来如下: 2^0 mod 17 = 1 2^1 mod 17 = 2 2^2 mod 17 = 4 2^3 mod 17 = 8 2^4 mod 17 = 16 2^5 mod 17 = 13 2^6 mod 17 = 7 2^7 mod 17 = 14 2^8 mod 17 = 9 2^9 mod 17 = 18 ≡ 1 (mod 17) 2^10 mod 17 = 2×2^9 ≡ 2 (mod 17) 2^11 mod 17 = 4×2^9 ≡ 4 (mod 17) 2^12 mod 17 = 8×2^9 ≡ 8 (mod 17) 2^13 mod 17 = 16×2^9 ≡ 16 (mod 17) 2^14 mod 17 = 13×2^9 ≡ 13 (mod 17) 2^15 mod 17 = 7×2^9 ≡ 7 (mod 17) 因此,2^x ≡ 5 (mod 17)的解为x=k×φ(17)+j,其中k为非负整数,j=14,因为2^14 ≡ 13 (mod 17)。因此,2^x ≡ 5 (mod 17)的解为x=16k+14,其中k为非负整数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值