2019.7.28 金华正睿集训总结Day1

课表如下:
在这里插入图片描述

7.28

上午

概率与期望

基本概念

• 随机变量:有多种可能的取值的变量

• P(A):事件 A 发⽣的概率

• E(X):随机变量 X 的期望值,E(X) = ∑ i P ( X = i ) ∗ i \sum_{i} P(X=i) *i iP(X=i)i

• 独⽴事件:互相不影响的事件,满⾜ P(AB) = P(A) * P(B)

• 对于独⽴事件,E(A * B)=E(A) * E(B)

常用公式

期望的线性性:E(X + Y) = E(X) + E(Y)

证明:

E(X + Y) = ∑ i \sum_{i} i ∑ j \sum_{j} jP(X = i, Y = j) * (i + j)

∑ i \sum_{i} i ∑ j \sum_{j} jP(X = i, Y = j) * i = ∑ i \sum_{i} i(X = i) * i

同理: ∑ i \sum_{i} i ∑ j \sum_{j} jP(X = i, Y = j) * j = ∑ j \sum_{j} jP(Y = j) * j

即: ∑ i \sum_{i} i ∑ j \sum_{j} jP(X = i, Y = j) * (i + j) = ∑ i \sum_{i} i(X = i) * i + ∑ i \sum_{i} i(X = i) * i

所以:E(X + Y) = E(X) + E(Y)

当0<x<1时, ∑ i = 0 ∞ = 1 1 − x \sum_{i=0}^∞ = \frac{1}{1 - x} i=0=1x1, ∑ i = 0 n = 1 − x n + 1 1 − x \sum_{i=0}^n = \frac{1 - x^{n + 1}}{1- x} i=0n=1x1xn+1

前缀和技巧

• 对于离散变量X,P(X=K) = P(X <= K) - P(X <= K - 1)

例:

1.有 n 个随机变量 X[1…n],每个随机变量都是从 1…S 中随机⼀个整数,求 Max(X[1…n]) 的期望

设最大值不超过S的期望为E(Y)

E(Y) = ∑ i S i ∗ P ( Y = i ) \sum_{i}^S i * P(Y = i) iSiP(Y=i)

= ∑ i S i ∗ ( P ( Y < = i ) − P ( Y < = i − 1 ) ) \sum_{i}^Si * (P(Y <= i) -P(Y <= i -1)) iSi(P(Y<=i)P(Y<=i1))

= ∑ i S i ∗ ( ( i S ) n − ( i − 1 S ) n ) \sum_{i}^Si *((\frac{i}{S})^n - (\frac{i - 1}{S})^n) iSi((Si)n(Si1)n)

2.概率为 p 的事件期望 1 p \frac{1}{p} p1次后发⽣

设次数为x

则E(x) = 1 p \frac{1}{p} p1

E(x) = ∑ i P ( x = i ) ∗ i \sum_{i}P(x = i) * i iP(x=i)i

= ∑ i i ∗ ( P ( x > = i ) − P ( x > = i + 1 ) ) \sum_{i}i * (P(x >= i) - P(x >= i +1)) ii(P(x>=i)P(x>=i+1))

P(x >= i) = (1 - p)i-1

P(x >= i + 1) = (1 - p)i

E(x) = ∑ i = 1 ∞ \sum_{i = 1}^{∞} i=1 i * ((1 - p)i-1 - (1 - p)i)

=((1 - p)0 - (1 - p)1) * 1 + ((1 - p)1 - (1 - p)2) * 2 ……

= ∑ i = 0 ∞ \sum_{i = 0}^{∞} i=0(1 - p)i

= 1 p \frac{1}{p} p1

• 对于表达式>=0,表达式= ∑ j = 1 i 1 \sum_{j=1}^i1 j=1i1

拿球问题

• 箱⼦⾥有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后不放回,求取出的数字之和的期望
• 箱⼦⾥有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后放回,求取出的数字之和的期望
• 箱⼦⾥有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后以p1 的概率放回,以 p2 的概率放回两个和这个相同的球,求取出的数字之和的期望

设Yi表示 i 被拿了几次

Xi = Yi * i

E(Xi) = E(Yi) * i

设S = ∑ i = 1 n \sum_{i = 1}^{n} i=1nXi

E(S) = E( ∑ i = 1 n \sum_{i = 1}^{n} i=1nXi) = ∑ i = 1 n \sum_{i = 1}^{n} i=1nE(Xi) = ∑ i = 1 n \sum_{i = 1}^{n} i=1n m n \frac{m}{n} nm * i = ( n + 1 ) ∗ m 2 \frac{(n + 1) * m}{2} 2(n+1)m

设T = ∑ i = 1 n \sum_{i = 1}^{n} i=1nYi = m

E(T) = E( ∑ i = 1 n \sum_{i = 1}^{n} i=1nYi) = ∑ i = 1 n \sum_{i = 1}^{n} i=1n E(Yi) = m

E(Y1) = E(Y2) = E(Y3) = ……= E(Yn)

E(Yi) = m n \frac{m}{n} nm

球球平等,答案一样

游走问题

做期望题先找等价点,设置若干个问题,再找不同点间E关系(只推下一步)解方程,或者设置一种,把所有情况推完。

• 在⼀条 n 个点的链上游⾛,求从⼀端⾛到另⼀端的概率

设Xi表示从 i 出发随机游走,第一次到 i + 1 的步数

Y = ∑ i = 1 n − 1 \sum_{i = 1}^{n - 1} i=1n1Xi

E(Y) = E( ∑ i = 1 n − 1 \sum_{i = 1}^{n - 1} i=1n1Xi) = ∑ i = 1 n − 1 \sum_{i = 1}^{n - 1} i=1n1E(Xi)

E(X1) = 1

E(X2) = 1 2 \frac{1}{2} 21 + 1 2 \frac{1}{2} 21(1 + E(X1) + E(X2)) = 1 + 1 2 \frac{1}{2} 21 E(X1) + 1 2 \frac{1}{2} 21E(X2)

E(X2) = 2 + E(X1) = 3

E(Xi) = 1 2 \frac{1}{2} 21 + 1 2 \frac{1}{2} 21(1 + E(X1) + E(X2))

解出E(Xi) = {1, 3, 5, 7……}

E(Y) = (n - 1)2

• 在⼀张 n 个点的完全图上游⾛,求从⼀个点⾛到另⼀个点的概率

完全图:每两个点之间都有边。任意两点等价。

1 n − 1 \frac{1}{n - 1} n11的概率成功(每次都能走到其他每个点)

所以期望步数为 n - 1

• 在⼀张 2n 个点的完全⼆分图上游⾛,求从⼀个点⾛到另⼀个点的概率

二分图同侧点等价

A:从一个点到同侧点的期望步数

B:从一个点到异侧点的期望步数

A = 1 + B

B = 1 n \frac{1}{n} n1 * 1 + n − 1 n \frac{n - 1}{n} nn1 * (A + 1) = 1 n \frac{1}{n} n1 * 1 + n − 1 n \frac{n - 1}{n} nn1 * (B + 2)

B = 2n - 1

• 在⼀张 n 个点的菊花图上游⾛,求从⼀个点⾛到另⼀个点的概率

菊花图:两部分:叶子和中心

1.叶子 --> 叶子 A = 1 + B

2.中心 --> 叶子 B = 1 n − 1 \frac{1}{n - 1} n11 * 1 + n − 2 n − 1 \frac{n - 2}{n - 1} n1n2 * (1 + A) = 1 n − 1 \frac{1}{n - 1} n11 * 1 + n − 2 n − 1 \frac{n - 2}{n - 1} n1n2 * (2 +B)

3.叶子 --> 中心 1

解方程

• 在⼀棵 n 个点的树上游⾛,求从根⾛到 x 的期望步数

以 y 为根

f(x) 表示从 x 第一次回到父亲的期望步数

d[x] 为 x 的度数

f(x) = 1 d [ x ] \frac{1}{d[x]} d[x]1 + 1 d [ x ] \frac{1}{d[x]} d[x]1 * ∑ i = 1 d [ x ] , i ! = f a [ x ] \sum_{i = 1}^{d[x],i != fa[x]} i=1d[x],i!=fa[x](1 + f(son[x]) + f(x))

然后做DP

• 构造200个点无向图,使得S到T期望 ≥1000000=1003

E要是O(n2),构造100个点的链从S到T,然后在S端点构造100个点的完全图即为1003

经典问题

• 每次随机⼀个 [1,n] 的整数,问期望几次能凑⻬所有数

在当前已经抽到了 i - 1 个数,抽到没抽到的数的概率是 n − i + 1 n \frac{n - i + 1}{n} nni+1, 期望次数为 n n − i + 1 \frac{n}{n - i + 1} ni+1n

反过来,E(S) = ∑ i = 1 n \sum_{i = 1}^{n} i=1n n i \frac{n}{i} in

• 随机⼀个⻓度为 n 个排列 p,求 p[1…i] 中 p[i] 是最⼤的数的概率

首先,i 后面的数不会对它产生影响

然后,前面的数字也不会对其产生影响,总是比它小的

所以,显然概率为 1 i \frac{1}{i} i1

• 问满⾜上⾯那个题的 i 的个数的平⽅的期望

E(S) = ∑ i ! = j \sum_{i != j} i!=j 1 i j \frac{1}{ij} ij1 + ∑ i \sum_{i} i 1 i \frac{1}{i} i1

设 Xi 为 i 是否满足条件的期望,只有两种取值,0和1

X = ∑ i − 1 n \sum_{i - 1}^{n} i1nXi

E(X2) = ( ∑ i = 1 n \sum_{i = 1}^{n} i=1nXi)2

=E( ∑ i ! = j \sum_{i != j} i!=jXiXj + ∑ i = 1 n \sum_{i = 1}^{n} i=1nXi)

= ∑ i ! = j \sum_{i != j} i!=jE(XiXj) + ∑ i = 1 n \sum_{i = 1}^{n} i=1nE(Xi)

• 随机⼀个⻓度为 n 的排列 p,求 i 在 j 的后⾯的概率

显然只有两种情况,在和不在,所以为 1 2 \frac{1}{2} 21

• 随机⼀个⻓度为 n 的排列 p,求它包含 w[1…m] 作为⼦序列/连续⼦序列的概率

第一问: ( n − m ) ! n ! \frac{(n - m)!}{n!} n!(nm)! * Cnm = 1 m ! \frac{1}{m!} m!1

第二问:取 m 个位置,第 1 个位置 n 种可能,第 2 个位置 n - 1 种可能,以此类推,第 m 个位置有 n - m + 1 种可能

在这 m 个位置中选正确的概率为 ( n − m ) ! n ! \frac{(n - m)!}{n!} n!(nm)!

再枚举第一个位置,有 n - m + 1 中可能, 所以概率为 ( n − m + 1 ) n ! \frac{(n - m + 1)}{n!} n!(nm+1)

• 有 n 堆⽯头,第 i 堆个数为 a[i],每次随机选⼀个⽯头然后把那⼀整堆都扔了,求第 1 堆⽯头期望第⼏次被扔

E = 1 + ∑ i = 2 n \sum_{i = 2}^{n} i=2nP(a[i] < a[1])

P(a[i] < a[1]) = a [ i ] a [ i ] + a [ 1 ] \frac{a[i]}{a[i] + a[1]} a[i]+a[1]a[i]

• 给⼀个序列,每次随机删除⼀个元素,问 i 和 j 在过程中相邻的概率

可知 i j 相邻即 i,j 在 i + 1 ~ j - 1 之后删除

即为i ~ j的数排列,i,j在最后的方案数除以总数

即: ( j − i − 1 ) ! ∗ 2 ( j − i + 1 ) ! \frac{(j - i - 1)! * 2}{(j - i +1)!} (ji+1)!(ji1)!2 = 2 ( j − i + 1 ) ∗ ( j − i ) \frac{2}{(j - i + 1) * (j - i)} (ji+1)(ji)2

• 给定⼀棵树,将他的边随机⼀个顺序后依次插⼊,求 u,v 期望什么时候连通

设路径长度为 k ,即求路径上的边出现的最后一条的期望时间

假设在第 i 次加边时联通

则 E = ∑ k n − 1 \sum_{k}^{n - 1} kn1 i * k ! ∗ C ( i − 1 , k − 1 ) ∗ ( n − k − 1 ) ! ( n − 1 ) ! \frac{k! * C(i - 1, k - 1)^ * (n - k - 1)!}{(n - 1)!} (n1)!k!C(i1,k1)(nk1)!

• 给 1…n 这 n 个数,每次随机选择⼀个还在的数并且删掉他的所有约数,求期望⼏次删完

如果 x 没被标记,把 x 的约数标记,并把 x 删去,求既往选到几个没被标记的 x

E(x) 为在没标记前被删去的期望被删掉的概率为 P(x), E(x) = 1 P ( x ) \frac{1}{P(x)} P(x)1

P(x) = 1 x 的 约 数 个 数 \frac{1}{x 的约数个数} x1

然后拆开相加

下午

概率与期望(继续)

期望线性性练习题

• 给定 n 个硬币,第 i 个硬币的价值为 w[i],每次随机取⾛⼀个硬币,获得的收益是左右两个硬币的价值的乘积,求期望总价值

Xi,j表示是否有贡献

S = ∑ i < j \sum_{i < j} i<jXi,j * Wi * Wj

E(S) = ∑ i < j \sum_{i < j} i<jE(Xi,j) * Wi * Wj

E(Xi,j) = 2 ( j − i + 1 ) ( j − i ) \frac{2}{(j - i + 1)(j - i)} (ji+1)(ji)2

E(S) = ∑ i < j \sum_{i < j} i<j 2 ∗ W   i   ∗ W   j   ( j − i + 1 ) ( j − i ) \frac{2 * W~i~ * W~j~}{(j - i + 1)(j - i)} (ji+1)(ji)2W i W j 

• 有 N 个数 a[1…N],每次等概率选出两个数,然后合并成⼀个新的数放回来,得到的收益是新的数的值,求总收益的期望

E(S) = ∑ i n \sum_{i}^{n} inE(Xi) * ai

Xi表示 ai对答案的贡献次数

E(Xi) = ∑ j = 1 n − 1 \sum_{j = 1}^{n - 1} j=1n1 2 n − j + 1 \frac{2}{n - j +1} nj+12

处理每次合并两个团时是否选到 i 所在的团, 即在 n - j + 1 个团中选择 2 个

• 给定⼀个数列 W[1…N],随机⼀个排列 H,如果 H[i] ⽐ H[i-1] 和 H[i+1] 都⼤,就获得 W[i] 的收益,求期望收益

设单次期望为 Xi

E(S) = ∑ i n \sum_{i}^{n} inXi

E(Xi) = Wi * P(Hi > max(Hi-1, Hi+1))

三个数是平等的,所以为最大值的概率为 1 3 \frac{1}{3} 31

• 给出⼀棵树,⼀开始每个点都是⽩的,每次选⼀个⽩点将他⼦树⾥所有点染⿊,求期望⼏次染⿊整个树

∑ i = 1 n \sum_{i = 1}^{n} i=1n 1 d e p [ i ] \frac{1}{dep[i]} dep[i]1

每个点的祖先要先删

总结

期望概率题的套路:

先定义目标状态期望E(S)

然后用线性性拆成若干个问题并分类

再找各个问题期望之间的关系,求递推式等的式子,或者解方程

概率题对思维有很大要求,对于一些情况的思考要更加灵活仔细

同时,计算能力也是十分重要的

经过这次学习,对期望概率还是有更加深入的理解的

补充:

全概率公式:在这里插入图片描述
全期望公式:EY=E[E(Y|X)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值