2019.8.11 金华正睿集训总结Day15

8.11

数学期望与组合计数

双射

“一一对应”

双射一定满足|A|=|B|
在这里插入图片描述

单射就是只能一对一,不能多对一

满射只要Y中的元素在X中都能找到原像就行了(一对一,多对一都行).

双射就是既是单射又是满射(一个对一个,每个都不漏掉).

单射

满射

双射

减法原理

· 有两个事件A,B,要么A发生要么B发生,现在知道了(A,B中某个发生)的方案数,以及A发生的方案数,求B发生的方案数。

· n个数,每个数是1到m中的一个,问至少有一个>=k的方案数

除法原理

· 有事件A和B1,B2,…,Bk,当A发生的时候,一定有恰好一个Bi发生,且每种发生的方案数相同。现在知道A发生的方案数,求B1发生的方案数。

· n个数排成一排,求a排在b前的方案数。

· n个数排成一排,给定a1,a2,…,am,求所有ai排在ai+1之前的方案数。

插板法

· 把n个题分给m个毒瘤出题人,且每个人至少分到一题的方案数

· 把n个题分给m个毒瘤出题人的方案数

· 在n个数中选m个数,且i和i+1不能同时选的方案数

然后又讲到了容斥,欧拉函数,Min-Max容斥

卡特兰数(Catalan Numbers)

合法的长度为2n的括号序列个数

一个栈的合法出队顺序个数

合法的带标号二叉树个数

n*n的格子从左下角向右向上走到右上角、不越过对角线的路径数
在这里插入图片描述
百度百科

卡特兰数详讲

第一类斯特林数

n个数的排列中有k个“环”的方案数

n个人分配到k个圆桌上,圆桌旋转相等的方案数,即只关心每个人左边的人是谁
在这里插入图片描述

第二类斯特林数

n个数分成k个集合的方案数,集合间不可区分
在这里插入图片描述

斯特林数百度百科

有关博客:

第一类斯特林数

第一类斯特林数学习小记

第一和第二类斯特林数小结

组合数学 —— 斯特林数(Stirling)

贝尔数(Bell Numbers – CF568B)

n个数分成若干个集合的方案数

B(n)=S(n,1)+S(n,2)+…+S(n,n)

怎么直接用B(1)…B(n-1)来推得B(n)

B(n)=sum{B(n-i)*C(n-1,i-1)}

百度百科

Prufer序列

这东西之前将讲过

对于有标号无根树

过程:找到编号最小的叶子,记录和它连接的边,然后把这个叶子以及边删掉,并继续这个过程,直到只剩两个点。

性质:x的度数是x在Prufer序列中的出现次数+1

逆向:维护一个叶子集合(未出现的数),然后从前往后模拟,每次找到编号最小的叶子,连一条边,并判断当前点是否成为了叶子。

百度百科

这里有代码

这里

XX数,XX数,真的多,各类数的性质和求法看一下,相关例题搞一搞

这里记录了好几个有关内容的博客,可以看一看,理解一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值