补充:MapReduce TopN案例

1、需求

对流量案例的输出结果进行加工,输出流量使用量在前10的用户信息

2、需求分析

3、编写代码

(1)FlowBean

FlowBean的代码在原有的基础上实现WritableComparable<FlowBean>,并实现compareTo方法:

package com.wolf.mr.topn;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class FlowBean implements WritableComparable<FlowBean> {

    private long upFlow; // shang xing liu liang
    private long downFlow; // xia xing liu liang
    private long sumFlow; // zong liu liang

    // kong can gou zao , wei le hou xu fan she yong
    public FlowBean() {
        super();
    }

    public FlowBean(long upFlow, long downFlow) {
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        sumFlow = upFlow + downFlow;
    }

    // xu lie hua method
    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);
    }

    // fan xu lie hua method
    @Override
    public void readFields(DataInput dataInput) throws IOException {
        upFlow = dataInput.readLong();
        downFlow = dataInput.readLong();
        sumFlow = dataInput.readLong();
    }

    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public void set(long upFlow, long downFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        sumFlow = upFlow+downFlow;
    }

    @Override
    public int compareTo(FlowBean bean) {

        int result;

        if (this.sumFlow > bean.getSumFlow()) {
            result = -1;
        }else if (this.sumFlow < bean.getSumFlow()) {
            result = 1;
        }else {
            result = 0;
        }

        return result;
    }


}

(2)FlowCountMapper

package com.wolf.mr.flowsum;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class FlowCountMapper extends Mapper<LongWritable, Text,Text,FlowBean> {

    Text k = new Text();
    FlowBean v = new FlowBean();
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        // 1	13736230513	192.196.100.1	www.atguigu.com	2481	24681	200

        // 1. get 1 line
        String line = value.toString();
        // 2. split by \t
        String[] fields = line.split("\t");
        // 3. package obj
        k.set(fields[1]); // tele number
        // attention the method here
        long upFlow =Long.parseLong(fields[fields.length - 3]) ;
        long downFlow =Long.parseLong(fields[fields.length - 2]) ;
        v.setUpFlow(upFlow);
        v.setDownFlow(downFlow);
        // v.set(upFlow,downFlow);
        // 4. write out
        context.write(k,v);
    }
}

(3)FlowCountReducer

package com.wolf.mr.flowsum;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
    FlowBean v = new FlowBean();

    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
        // input : telenum <upflow downflow sumflow(unknown)>

        // 1. sum
        long sum_upFlow = 0;
        long sum_downFlow = 0;

        for (FlowBean flowBean : values) {
            sum_upFlow += flowBean.getUpFlow();
            sum_downFlow += flowBean.getDownFlow();
        }
        v.set(sum_upFlow, sum_downFlow);
        // 2. write out
        context.write(key, v);
    }
}

(4)FlowCountDriver

package com.wolf.mr.flowsum;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowCountDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

        // 1. get job obj
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        // 2. set jar storage path
        job.setJarByClass(FlowCountDriver.class);
        // 3.link mapper and reducer
        job.setMapperClass(FlowCountMapper.class);
        job.setReducerClass(FlowCountReducer.class);
        // 4.set mapper's type of key and value
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);
        // 5. set final output type of key and value
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

//        job.setPartitionerClass(ProvincePartitioner.class);
//        job.setNumReduceTasks(5);
        // 6. set input output path
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        // 7. submit job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

参数

/home/wolf/phonesort.txt /home/wolf/output/topn_out

运行程序 

运行结果

成功用MapReduce实现了TopN案例。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值