Flink之数据流类型

本文详细介绍了Flink的DataStream API中各种数据流类型,包括DataStream、KeyedStream、WindowedStream、JoinedStream、CoGroupedStreams和ConnectedStreams。通过转换和操作,这些数据流类型在Flink流处理中扮演了重要角色,如KeyedStream用于按key分组,WindowedStream实现了窗口操作, JoinedStream和CoGroupedStreams用于流的连接和组合,ConnectedStreams则允许不同类型的流连接并共享状态。
摘要由CSDN通过智能技术生成

Flink为流处理和批处理分别提供了DataStream API和DataSet API。在开发工作中这些API极大的便利了开发者开发大数据应用。DataStream 在经过Transformation之后,会随之生成相应的数据流类型。比如:KeyedStream,JoinedStreams,CoGroupedStreams等等。但这些数据流类型之间是如何通过转换联系在一起的?。下文☞☞☞☞☞

流之间转换

15934580-158ee37036585e6a.png
图1

DataStream

DataStream 是Flink 流处理API中最核心的数据结构。他代表了一个运行在多个分区上的并行流。一个DataStream可以从StreamExecutionEnvironment 通过env.addSource(SourceFunction)获得,可以但是不限于这一种方式。

DataStream上的转换操作都是逐条的,比如map(),flatMap(),filter()。DataStream 也可以执行rebalance(再平衡,用来减轻数据倾斜) 和broadcaseted(广播)等分区转换。

val stream: DataStream[MyType] = env.addSource(new FlinkKafkaConsumer011[String](...)).setParallelism(3)
val str1: DataStream[(String, MyType)] = stream.flatMap { ... }
val str2: DataStream[(String, MyType)] = stream.rebalance()
val str3: DataStream[AnotherType] = stream.map { ... }

上面给出的DataStream代码块在运行时会转换成如下执行图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值