[BZOJ 2142]礼物:扩展Lucas定理

点击这里查看原题

扩展Lucas定理教程
此题即为C(n,w1) * C(n-w1,w2) * …%mod

/*
User:Small
Language:C++
Problem No.:2142
*/
#include<bits/stdc++.h>
#define ll long long
#define inf 999999999
using namespace std;
ll mod,n,m,w[10],ans,sum;
ll pow(ll a,ll b,ll p){
    ll res=1;
    while(b){
        if(b&1LL) res=res*a%p;
        a=a*a%p;
        b>>=1LL;
    }
    return res;
}
void exgcd(ll a,ll b,ll &x,ll &y){
    if(b==0){
        x=1,y=0;
        return;
    }
    exgcd(b,a%b,y,x);
    y-=a/b*x;
}
ll inv(ll a,ll b){
    ll x,y;
    exgcd(a,b,x,y);
    x=(x%b+b)%b;
    if(!x) x+=b;
    return x;
}
ll mul(ll n,ll pi,ll pk){
    if(!n) return 1;
    ll res=1;
    if(n/pk){
        for(ll i=2;i<=pk;i++)
            if(i%pi) res=res*i%pk;
        res=pow(res,n/pk,pk);
    }
    for(ll i=2;i<=n%pk;i++)
        if(i%pi) res=res*i%pk;
    return res*mul(n/pi,pi,pk)%pk;
}
ll c(ll n,ll m,ll mod,ll pi,ll pk){
    if(m>n) return 0;
    ll a=mul(n,pi,pk),b=mul(m,pi,pk),c=mul(n-m,pi,pk),res=0;
    ll k=0;
    for(ll i=n;i;i/=pi) k+=i/pi;
    for(ll i=m;i;i/=pi) k-=i/pi;
    for(ll i=n-m;i;i/=pi) k-=i/pi;
    res=a*inv(b,pk)%pk*inv(c,pk)%pk*pow(pi,k,pk)%pk;
    res=res*(mod/pk)%mod*inv(mod/pk,pk)%mod;
    return res;
}
ll exlucas(ll n,ll m,ll p){
    ll res=0,x=p;
    for(ll i=2;i*i<=x;i++){
        if(x%i==0){
            ll pk=1;
            while(x%i==0){
                x/=i;
                pk*=i;
            }
            res=(res+c(n,m,p,i,pk))%p;
        }
    }
    if(x!=1) res=(res+c(n,m,p,x,x))%p;
    return res;
}
int main(){
    freopen("data.in","r",stdin);//
    scanf("%lld%lld%lld",&mod,&n,&m);
    ans=1;
    for(int i=1;i<=m;i++){
        scanf("%lld",&w[i]);
        sum+=w[i]; 
    }
    if(sum>n){
        printf("Impossible\n");
        return 0;
    }
    for(int i=1;i<=m;i++){
        ans=ans*exlucas(n,w[i],mod)%mod;
        n-=w[i];
    }
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值