Description
一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。
Solution
容易看出答案是:
A
n
s
=
(
n
w
1
)
(
n
−
w
1
w
2
)
(
n
−
w
1
−
w
2
w
3
)
…
Ans=\binom{n}{w_1}\binom{n-w_1}{w_2}\binom{n-w_1-w_2}{w_3}\dots
Ans=(w1n)(w2n−w1)(w3n−w1−w2)…
p p p没有保证是质数,所以考虑对于每一个组合数用扩展 L u c a s Lucas Lucas定理求出。
将 p p p表示成 ∏ i p i k i \prod_i p_i^{k_i} ∏ipiki,我们可以对于所有不同的质因子 p i p_i pi求出 ( n m )   m o d   p i k i \binom{n}{m}\bmod p_i^{k_i} (mn)modpiki,然后用CRT合并,所以现在主要是要求 ( n m )   m o d   p i k i \binom{n}{m}\bmod p_i^{k_i} (mn)modpiki。
我们首先只考虑对于
n
!
n!
n!的计算,
m
!
m!
m!、
(
n
−
m
)
!
(n-m)!
(n−m)!同理。
像网上大多数博客一样,举这个例子:
假设
n
=
22
n=22
n=22,
p
i
=
3
p_i=3
pi=3,
k
i
=
2
k_i=2
ki=2
那么
n
!
=
1
×
2
×
⋯
×
22
n!=1\times 2 \times \cdots \times 22
n!=1×2×⋯×22
然后将其中是3的倍数的数提出来:
(
1
×
2
×
4
×
5
×
7
×
8
×
10
×
11
×
13
×
14
×
16
×
17
×
19
×
20
×
22
)
×
3
6
×
(
1
×
2
×
3
×
4
×
5
×
6
×
7
)
(1 \times 2 \times 4 \times 5 \times 7 \times 8 \times 10 \times 11 \times 13 \times 14 \times 16 \times 17 \times 19 \times 20 \times 22)\times 3^6 \times(1\times 2\times 3 \times 4 \times 5 \times 6 \times7)
(1×2×4×5×7×8×10×11×13×14×16×17×19×20×22)×36×(1×2×3×4×5×6×7)
然后发现这个式子可以分成三部分:
1、
p
i
k
i
p_i^{k_i}
piki,这个可以直接快速幂
2、对于阶乘,我们可以递归求解
3、对于前面的缺了
3
3
3的倍数的阶乘,我们发现以
p
i
k
i
p_i^{k_i}
piki为周期,它们是同余的!
即
(
1
×
2
×
4
×
5
×
7
×
8
)
≡
(
10
×
11
×
13
×
14
×
16
×
17
)
(
m
o
d
3
2
)
(1 \times 2 \times 4 \times 5 \times 7 \times 8) \equiv (10 \times 11 \times 13 \times 14 \times 16 \times 17)\pmod {3^2}
(1×2×4×5×7×8)≡(10×11×13×14×16×17)(mod32)
注意
p
i
k
i
p_i^{k_i}
piki要放在最后算,因为
m
!
m!
m!、
(
n
−
m
)
!
(n-m)!
(n−m)!如果包含
p
i
k
i
p_i^{k_i}
piki,就求不了逆元了。
注:计算
n
!
n!
n!中质因子
p
i
p_i
pi的个数公式为:
x
=
∑
j
=
1
∞
⌊
n
p
i
j
⌋
x=\sum_{j=1}^{\infty}\lfloor \frac{n}{p_i^{j}} \rfloor
x=∑j=1∞⌊pijn⌋
Code
/************************************************
* Au: Hany01
* Date: May 27th, 2018
* Prob: [BZOJ2142] 礼物
* Email: hany01@foxmail.com
************************************************/
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
#define File(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define x first
#define y second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define ALL(a) (a).begin(), (a).end()
#define SZ(a) ((int)(a).size())
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia
template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
int p;
inline int read()
{
register int _, __; register char c_;
for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1;
for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
return _ * __;
}
inline LL Pow(LL a, LL b, LL Mod)
{
static int Ans;
for (Ans = 1; b; b >>= 1, (a *= a) %= Mod)
if (b & 1) (Ans *= a) %= Mod;
return Ans;
}
LL gcd(LL a, LL b, LL& x, LL& y)
{
if (!b) {
x = 1, y = 0;
return a;
}
LL tmp = gcd(b, a % b, x, y), t = x;
x = y, y = t - (a / b) * y;
return tmp;
}
LL fac(LL n, LL p, LL pk)
{
if (!n) return 1;
LL res = 1;
for (register LL i = 2; i <= pk; ++ i)
if (i % p) (res *= i) %= pk;
res = Pow(res, n / pk, pk);
for (register LL i = 2; i <= n % pk; ++ i)
if (i % p) (res *= i) %= pk;
return res * fac(n / p, p, pk) % pk;
}
inline LL inv(LL n, LL Mod)
{
static LL x, y, t;
gcd(n, Mod, x, y);
t = ((x % Mod) + Mod) % Mod;
return t;
}
inline LL C(LL n, LL m, LL p, LL k, LL pk)
{
if (n < m) return 0;
register LL t1 = fac(n, p, pk), t2 = fac(m, p, pk), t3 = fac(n - m, p, pk), cnt = 0;
for (register LL i = n; i; i /= p) cnt += i / p;
for (register LL i = m; i; i /= p) cnt -= i / p;
for (register LL i = n - m; i; i /= p) cnt -= i / p;
return t1 * inv(t2, pk) % pk * inv(t3, pk) % pk * Pow(p, cnt, pk) % pk;
}
inline LL CRT(LL c, LL m) { return c * inv(p / m, m) % p * (p / m) % p; }
inline LL exLucas(LL n, LL m)
{
LL Ans = 0, tmp = p;
for (register int i = 2; i * i <= tmp; ++ i)
if (!(tmp % i)) {
LL cnt = 0, prod = 1;
while (!(tmp % i)) tmp /= i, prod *= i, ++ cnt;
(Ans += CRT(C(n, m, i, cnt, prod), prod)) %= p;
}
if (tmp > 1) (Ans += CRT(C(n, m, tmp, 1, tmp), tmp)) %= p;
return Ans;
}
int main()
{
#ifdef hany01
File("bzoj2142");
#endif
static int n, m, w[7], sumw = 0;
static LL Ans = 1;
p = read(), n = read(), m = read();
For(i, 1, m) sumw += w[i] = read();
if (sumw > n) { puts("Impossible"); return 0; }
For(i, 1, m) (Ans *= exLucas(n, w[i])) %= p, n -= w[i];
printf("%lld\n", Ans);
return 0;
}
//重见金英人未见。相思一夜天涯远。
// -- 晏几道《蝶恋花·黄菊开时伤聚散》