点击这里查看原题
DP,
gi
表示高度小于i的树的个数,
gi=∑i−1j=0f(j)
,
fi
表示高度为i的树的个数。
于是可得
fi=∑j=1n(nj)∗fji−1∗gn−ji−1
此题需要用到高精度
#include<bits/stdc++.h>
using namespace std;
int n,d;
struct bignum{
int len,a[1000];
bignum(){
len=0;
memset(a,0,sizeof(a));
}
void modify(){
int i=1,x=0;
for(;x||i<=len;i++){
x+=a[i];
a[i]=x%10000;
x/=10000;
}
len=max(len,i-1);
while(len>1&&!a[len]) len--;
}
}f[33][33],g[33][33],c[33][33];
bignum operator+(const bignum a,const bignum b){
bignum c;
c.len=max(a.len,b.len);
for(int i=1;i<=c.len;i++){
c.a[i]=a.a[i]+b.a[i];
}
c.modify();
while(c.a[c.len+1]) c.len++;
return c;
}
bignum operator*(const bignum a,const bignum b){
bignum c;
c.len=a.len+b.len-1;
for(int i=1;i<=a.len;i++){
for(int j=1;j<=b.len;j++){
c.a[i+j-1]+=a.a[i]*b.a[j];
}
}
c.modify();
return c;
}
bignum itob(int x){
bignum c;
c.len=0;
while(x){
c.a[++c.len]=x%10000;
x/=10000;
}
if(c.len<1) c.len=1;
return c;
}
void write(bignum &p){
printf("%d",p.a[p.len]);
for(int i=p.len-1;i;i--) printf("%04d",p.a[i]);
}
int main(){
scanf("%d%d",&n,&d);
for(int i=0;i<=n;i++) c[i][0]=itob(1);
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++) c[i][j]=c[i-1][j]+c[i-1][j-1];
}
g[0][0]=f[0][0]=itob(1);
for(int i=1;i<=n;i++) f[0][i]=g[0][0];
for(int i=1;i<=d;i++){
f[i][0]=g[i][0]=itob(1);
g[i][1]=g[i-1][1]+f[i-1][1];
for(int j=1;j<=n;j++)
f[i][1]=f[i][1]+c[n][j]*f[i-1][j]*g[i-1][n-j];
for(int j=2;j<=n;j++) f[i][j]=f[i][j-1]*f[i][1],g[i][j]=g[i][j-1]*g[i][1];
}
write(f[d][1]);
printf("\n");
return 0;
}