[HZOI2016]COGS2587 你猜是不是dp - 线段树优化dp

题目大意:有n个东西,每个东西选或者不选都会有一个收益(有可能为负),有若干额外收益(必正)形如如果一段区间都选就有一定的收益,或者一段区间都不选就有一定的收益。问最大收益,可以做到O(nlgn)
题解:这个题出出来的时候数据范围只有1e4,std是线段树/st表优化网络流建图。但其实可以dp,记dp[i][01]表示前i个东西最后一个东西必选/必不选,的最大收益。记s[i][01]表示选/不选的前缀和。那么:
dp[i][0]=minj=1i{dp[j1][1]+s[i][0]s[j1][0]+[l,r][j,i]and t=0c}
后面那个sigma表示额外收益。直接做是三次的,gg。稍微动点脑子就是平方。
考虑优化,问题分成两部分,前面的好说,考虑后面的一个区间[l,r],会对哪些(i,j)做出贡献呢?显然对于jl,ri的(i,j)有贡献,而dp[j-1][1]-s[j-1][0]则会对所有ji的(i,j)产生贡献,至于s[i][0]是个常数,无关要紧。注意到这就是一个矩形加求最值问题,并且有天然的离线结构,因此扫描线即可。
代码(cogs上要开文件):

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<climits>
#include<vector>
#include<utility>
#define gc getchar()
#define mp make_pair
#define fir first
#define sec second
#define inf (INT_MIN/2+10)
#define N 10010
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
typedef pair<int,int> pii;
inline int inn()
{
    int x=0,s=1,ch;while(((ch=gc)<'0'||ch>'9')&&ch!='-');
    if(ch^'-') x=ch^'0';else s=-1;
    while((ch=gc)>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^'0');
    return s*x;
}
struct segment{
    int l,r,f[2],pt[2];//0 : black, 1 : white
    segment *ch[2];
}*rt;
int build(segment* &rt,int l,int r)
{
    rt=new segment,rt->l=l,rt->r=r;int mid=(l+r)>>1;
    if(l<r) build(rt->ch[0],l,mid),build(rt->ch[1],mid+1,r);
    return rt->f[0]=rt->f[1]=0,rt->pt[0]=rt->pt[1]=0;
}
inline int update_tags(segment* &rt,int v,int k) { return rt->f[k]+=v,rt->pt[k]+=v; }
inline int push_down(segment* &rt,int k)
{
    update_tags(rt->ch[0],rt->pt[k],k),
    update_tags(rt->ch[1],rt->pt[k],k),
    rt->pt[k]=0;return 0;
}
int update(segment* &rt,int s,int t,int v,int k)
{
    int l=rt->l,r=rt->r,mid=(l+r)>>1;
    if(s<=l&&r<=t) return update_tags(rt,v,k);
    if(rt->pt[k]) push_down(rt,k);
    if(s<=mid) update(rt->ch[0],s,t,v,k);
    if(mid<t) update(rt->ch[1],s,t,v,k);
    return rt->f[k]=max(rt->ch[0]->f[k],rt->ch[1]->f[k]);
}
inline int update(segment* &rt,int p,int v,int k) { return update(rt,p,p,v,k); }
int query(segment* &rt,int s,int t,int k)
{
    int l=rt->l,r=rt->r,mid=(l+r)>>1,ans=inf;
    if(s<=l&&r<=t) return rt->f[k];
    if(rt->pt[k]) push_down(rt,k);
    if(s<=mid) ans=max(ans,query(rt->ch[0],s,t,k));
    if(mid<t) ans=max(ans,query(rt->ch[1],s,t,k));
    return ans;
}
int s[N][2],dp[N][2];vector<pair<pii,int> > v[N];
int show(segment* &rt)
{
    static int f[2];f[0]=rt->f[0],f[1]=rt->f[1];
    static int pt[2];pt[0]=rt->pt[0],pt[1]=rt->pt[1];
    int l=rt->l,r=rt->r;debug(l)sp,debug(r)sp;
    debug(f[0])sp,debug(f[1])sp,debug(pt[0])sp,debug(pt[1])ln;
    if(l<r) show(rt->ch[0]),show(rt->ch[1]);return 0;
}
int main()
{
    int n=inn()+1,m=inn(),t,l,r;build(rt,1,n);
    for(int j=0;j<=1;j++)
        for(int i=2;i<=n;i++) s[i][j]=s[i-1][j]+inn();
    update(rt,1,0,0),update(rt,1,0,1);
    while(m--)
        t=inn()-1,l=inn()+1,r=inn()+1,
        v[r].push_back(mp(mp(l,inn()),t));
    for(int i=2;i<=n;i++)
    {
        for(int j=0;j<(int)v[i].size();j++)
            update(rt,1,v[i][j].fir.fir-1,v[i][j].fir.sec,v[i][j].sec);
//      show(rt);cerr ln;
        for(int j=0;j<=1;j++) dp[i][j]=query(rt,1,i-1,j)+s[i][j];
        for(int j=0;j<=1;j++) update(rt,i,dp[i][j^1]-s[i][j],j);
//      show(rt);cerr ln;
    }
//  for(int i=2;i<=n;i++) debug(dp[i][0])sp,debug(dp[i][1])ln;
    return !printf("%d\n",max(dp[n][0],dp[n][1]));
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页