折半查找&二分查找

简介

折半查找也就是二分查找,也可以叫二分法,本质上都是一样的,通过比对中间值与目标值,一次性就能筛掉一半的数字。

举例:

一个猜数字游戏,让你来猜1-100中我选中的数,如果猜中游戏结束,如果猜的数字比选的数字大,告诉你猜的数大了,反之亦然。

如何针对上述游戏,寻找到一个最快的办法呢?—— 拼运气 或 折半查找

每次猜的数字为区间范围的中数,这样最多在 \log_{2}N 次内一定能找到!

假设选中的数字为 target = 77

第一次:选(1 + 100) / 2 = 50(这里取整数即可)  -> 小了

第二次:选(50 + 100) / 2 = 75  ->  小了

第三次:选(75 + 100) / 2 = 87  ->  大了

第四次:选(75 + 87) / 2 = 81  ->  大了

第五次:选(75 + 81) / 2 = 78  ->  大了

第六次:选(75 + 78) / 2 = 76  ->  小了

第七次:选(76 + 78) / 2 = 77  ->  对了 

通过上述案例,我们能发现,每次在进行查找的时候能够排除一半的错误答案!相当于对所有可能的个数除2。因此折半查找的时间复杂度   \log_{2}N。100个数,最多只要7次就能找到!

虽然折半查找效率这么高,但也是有缺点的~互联网没有“银弹”~

折半查找最大的问题在于,要求你进行查找的数据集必须是有序的!!!所以在编程的时候,可能需要你先进行一次排序~

编码

思路:

1.如果没告诉你数组是有序的,需要对数组进行一次排序(假设是有序的)

2.计算中间数在数组的位置

3.将中间数与目标值进行比对,如果中间数小了,就去右边的区间继续查找,如果中间数大了,就去左边的区间继续查找,如果刚好相等,说明找到了,返回即可。

下述折半查找的代码是基于比区间来写的,一定需要注意!!!否则会导致最终结果不对,这是二分法的细节问题(很容易出错)! 

#include <stdio.h>

int BinarySearch(const int* arr, int target, int size)
{
	int left = 0;
	int right = size - 1;
	
	while (left <= right) //这里定义的是[left, right] 闭区间,一定要注意
	{
        
		//计算中间的那个元素的下标
		int mid = left + (right - left) / 2;
		
		//如果要找的数小于中间的那个数
		if (target < arr[mid])
			right = mid - 1;

		else if (target > arr[mid])
			left = mid + 1;

		//如果找到了就直接返回这个元素的下标
		else
			return mid;
	}
}

int main()
{
	int arr[] = { 5,8,10,23,48,66,88,100 };
	int target = 48;

	//计算数组中元素个数
	int size = sizeof(arr) / sizeof(arr[0]);

	int index = BinarySearch(arr, target, size);
	printf("找到了,这个数在数组中的下标为:%d", index);
	return 0;
}

优化

上述的代码是针对目标值出现在数组的情况,不适用于更普遍一半的情况。在C++标准库中就提供了折半查找这个函数,他的功能是,找到目标值在数组中第一次出现的位置,如果数组中未存在目标值,则找到插入位置。

通过观察上述折半查找算法的过程,我们会发现,

1.如果中间值arr[mid]大于目标值target,则arr[mid+1]~最后 的值都大于目标值taget。arr[left]~arr[mid]可能小于等于目标值target。

2.如果中间值arr[mid]小于目标值target,则arr[left]~arr[mid] 的值都小于目标值target。

最终我们得出,left左边的值都是小于目标值的,right右边的值都是大于目标值的。

如果要找到插入的位置,则找到第一个大于等于目标值的位置。

代码

int searchInsert(int* nums, int numsSize, int target)
{
	int left = 0;
    int right = target - 1;
    while(left <= right)
    {
        int mid = left + (right -left) / 2;
        if(nums[mid] < target)
            left = mid + 1;
        else
            right = mid - 1;
    }
    return left;
}

上述代码,将中间值大于等于的情况进行了合并。为的是找到第一个出现的位置,并且代表的含义也变了——right右边的数是大于等于目标值target的。

举个例子:

int arr[] = {1,2,3,3,3,3,5,6};
target = 3

要去查找第一个3,我们的中间值第一次找到的3是第二个,但我们要找的是第一个,所以需要继续缩小右边界,才能找到。

至于最后为什么返回的是left呢?因为根据代码,left左边的值是小于目标值的,right右边的值是大于等于目标值的,而最终left和right的位置一定是满足right在left的左边且相差一个元素,于是就返回left了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值