查找-折半查找(二分查找)

折半查找

折半查找,也称为二分查找。其要求是数据是有序的,即表中元素按关键字有序。

比如有序表是递增有序的。首先取这表中的中间的数据与关键值(给定值key)比较的关系。若key>表的中间值,则说明key存在于表的中间值的右侧。因此,中间值右侧的区间又要取出中间值再与key比较,以此类推,直至查找成功或者区间缩小为0时还找不到就结束。

若key有与表中某区间 的中间值相等,则说明查找成功。

若表的区间缩小为0时,仍然没有找到与key相匹配的值,就说明key不在表中。

特点:只适合用于顺序存储结构,而不适用于链式存储结构。表必须要求是有序表

时间复杂度:

O(log2(n))

 

折半查找的基本思路:

优点:效率高,平均性能好

缺点:插入删除困难

代码:

(1)

#include<stdio.h>
#define MAXL 10
typedef struct
{
	int key;
}NodeType;
typedef NodeType SeqList[MAXL];
int BinSearch(SeqList r,int n,int k)
{
	int left=0,right=n-1,mid;
		printf("\n中间值:");
	while(left<=right)
	{
		mid=(left+right)/2;
			printf("%d  ",mid);
		if(r[mid].key==k)
		{
		
				return mid;
		}
		
		if(r[mid].key>k)
			right=mid-1;
		else
			left=mid+1;
	}
	return -1;
}
void main()
{
	SeqList r;
	int k=7;
	int a[10]={0,1,2,3,4,5,6,7,8,9},i,n=10;
	for(i=0;i<n;i++)
		r[i].key=a[i];
	printf("关键字序列:");
	for(i=0;i<n;i++)    
	{
		printf("%d  ",r[i].key);
	}
	if((i=BinSearch(r,n,k))!=-1)
		printf("\n元素%d的位置是%d\n",k,i);
	else
		printf("元素%d不在表中\n",k);
}

 

(2)

#include<stdio.h>
int BinSearch(int arr[],int n,int k)
{
	int left=0,right=n-1,mid;
		printf("\n中间值:");
	while(left<=right)
	{
		mid=(left+right)/2;
			printf("%d  ",mid);
		if(arr[mid]==k)
		{
		
				return mid;
		}
		
		if(arr[mid]>k)
			right=mid-1;
		else
			left=mid+1;
	}
	return -1;
}
void main()
{

	int k=7;
	int a[10]={0,1,2,3,4,5,6,7,8,9},i,n=10;
	printf("关键字序列:");
	for(i=0;i<n;i++)    
	{
		printf("%d  ",a[i]);
	}
	if((i=BinSearch(a,n,k))!=-1)
		printf("\n元素%d的位置是%d\n",k,i);
	else
		printf("元素%d不在表中\n",k);
}

 

折半查找,也称为二分查找,是一种常见的查找算法。它是针对有序数组进行查找的。具体步骤如下: 1. 确定查找范围的左右边界,分别为 low 和 high,初始值分别为数组的第一个和最后一个元素的下标。 2. 计算中间位置 mid,即 mid = (low + high) / 2。 3. 比较中间位置的元素与要查找的值。如果相等,返回 mid;如果小于要查找的值,说明要查找的元素在右半部分,将 low 赋值为 mid + 1;如果大于要查找的值,说明要查找的元素在左半部分,将 high 赋值为 mid - 1。 4. 循环执行第 2 步到第 3 步,直到 low 大于 high,表示查找失败。 下面是 PHP 代码实现: ```php function binarySearch($arr, $target) { $low = 0; $high = count($arr) - 1; while ($low <= $high) { $mid = intval(($low + $high) / 2); if ($arr[$mid] == $target) { return $mid; } elseif ($arr[$mid] < $target) { $low = $mid + 1; } else { $high = $mid - 1; } } return -1; } ``` 除了折半查找,还有二叉树查找和有序表查找。二叉树查找是利用二叉树结构进行查找,每次比较当前节点的值与目标值的大小关系,然后根据大小关系往左或者往右走,直到找到目标值或者走到叶子节点为止。有序表查找是将有序表分成若干个子表,然后根据目标值与子表的范围比较,确定目标值可能在哪个子表中,然后再在该子表中进行折半查找。这两种算法的实现比较复杂,这里就不再赘述了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值