Silver Cow Party (dijkstra)

A - Silver Cow Party


 

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input
Line 1: Three space-separated integers, respectively:  NM, and  X 
Lines 2..  M+1: Line  i+1 describes road  i with three space-separated integers:  Ai, Bi, and  Ti. The described road runs from farm  Ai to farm  Bi, requiring  Ti time units to traverse.
Output
Line 1: One integer: the maximum of time any one cow must walk.
Sample Input
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
Sample Output
10
Hint
Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.


题目大意:有很多牛要从自己的农场去指定的农场参加聚会,然后再返回自己所在的农场,来回的路程是不一样的,但是牛都会优先走最短的,求所有牛中走的最长的路程是多少
他们都说什么转换数组,我不懂,我用的两个 dijkstra解决的,代码比较傻,但是容易理解。 大笑
#include<stdio.h>
#include<string.h>
using namespace std;
#define maxn 1010
#define inf 99999999
int n;
int e[maxn][maxn];
int dis1[maxn],dis2[maxn];
void d1(int x)
{
	int i,j,min,u,v;
	int book[1010];
	for(i=1;i<=n;i++)
		dis1[i]=e[i][x];
	memset(book,0,sizeof(book));
	book[x]=1;
	for(i=1;i<=n-1;i++)
	{
		min=inf;
		for(j=1;j<=n;j++)
		{
			if(book[j]==0 && dis1[j]<min)
			{
				u=j;
				min=dis1[j];
			}
		}
		book[u]=1;
		for(v=1;v<=n;v++)
		{
			if(e[v][u]<inf)
			{
				if(dis1[v]>dis1[u]+e[v][u])
					dis1[v]=dis1[u]+e[v][u];
			}
		}
	}
}
void d2(int x)
{
	int i,j,min,u,v;
	int book[1010];
	for(i=1;i<=n;i++)
		dis2[i]=e[x][i];
	memset(book,0,sizeof(book));
	book[x]=1;
	for(i=1;i<=n-1;i++)
	{
		min=inf;
		for(j=1;j<=n;j++)
		{
			if(book[j]==0 && dis2[j]<min)
			{
				u=j;
				min=dis2[j];
			}
		}
		book[u]=1;
		for(v=1;v<=n;v++)
		{
			if(e[u][v]<inf)
			{
				if(dis2[v]>dis2[u]+e[u][v])
					dis2[v]=dis2[u]+e[u][v];
			}
		}
	}
}
int main()
{
	//printf("%d",inf);
	int m,x,i,j,a,b,t;
	while(scanf("%d%d%d",&n,&m,&x)!=EOF)
	{
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=n;j++)
			{
				if(i==j)
					e[i][j]=0;
				else
					e[i][j]=inf;
			}
		}
		while(m--)
		{
			scanf("%d%d%d",&a,&b,&t);
			if(e[a][b]>t)
				e[a][b]=t;
		}
		d1(x);
		d2(x);
		int ans=0;
		for(i=1;i<=n;i++)
		{
			if(dis1[i]+dis2[i]>ans)
				ans=dis1[i]+dis2[i];
			//printf("%d到%d为%d----%d到%d为%d\n",i,x,dis1[i],x,i,dis2[i]);
		}
		printf("%d\n",ans);
	}
}
注意d1和d2的微小差别就不会错!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值