算法题 插入乘号 动态规划(C++实现)

插入乘号

Time Limit: 1000 MS Memory Limit: 1000 KB

  • Description
给出N个1-9的数字 (v1,v2,…,vN), 不改变它们的相对位置, 在中间加入K个乘号和N-K-1个加号, 括号随便加, 
 使最终结果最大。因为乘号和加号一共就是N-1个,所以恰好每两个相邻数字之间都有一个符号。 
 例如: N=5, K=2,5个数字分别为1、2、3、4、5,可以进行如下运算:  
 1*2*(3+4+5)=24  1*(2+3)*(4+5)=45  (1*2+3)*(4+5)=45
 等等.
  • Input
第一行输入M(M<=10)表示有M组数据。每组数据输入两整数N和K(N<=20, K<20), 接下来输入N个1-9的数字。
  • Output
输出M行正整数,第i行表示第i组数据的最大结果, 你可能需要用long long类型存储结果。
  • Sample Input
2
5 2
1 2 3 4 5 
6 3
1 2 3 4 5 6
  • Sample Output
120
720

C++代码实现

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

long long insertMultipleSign(int num[], int N, int K) {
	// sum[i][j] = num[i]+num[i+1]+...+num[j]  = sum{num[k]},k from i to j
    static long long sum[21][21] = { 0 }; 
    //定义dp[i][k]:向前i个数插入恰好k个乘法运算符(i-k-1个加法运算符)获得的最大值。
    static long long dp[21][21] = {-1}; 

    // 提前计算sum[i][j]
    for (int i = 1; i <= N; ++i) {
        // sum[i][i - 1] = 0;
        for (int j = i; j <= N; ++j) {
            sum[i][j] = sum[i][j - 1] + num[j - 1];
        }
    }
    // 初始时dp[i][0]表示前i个数中没有乘法运算符(即全是加法运算符),
    // 所以dp[i][0] = sum{num[k]},k from 1 to i
    for (int i = 1; i <= N; ++i) {
        dp[i][0] = sum[1][i];
    }

    //对于k个乘法运算符和i个数,考虑所有可能的分割m,
    //通过 在前m个数中插入k-1个乘法运算符 和 计算后i-m个数的和,并将两者计算结果相乘
    // 使得i个数中插入k个乘法运算符后的计算结果最大
    // dp[i][k] = max{dp[m][k-1] * sum[m+1][i]},m from k to i
    // 这里dp[m][k-1]是前m+1个数中插入k-1个乘法运算符的最大值
    for (int k = 1; k <= K; ++k) {
        for (int i = k+1; i <= N; ++i) {
            dp[i][k] = -1;
            for (int m = k; m < i; ++m) {
                dp[i][k] = max(dp[i][k], dp[m][k - 1] * sum[m + 1][i]);
            }
        }
    }

    return dp[N][K];
}

int main() {
    int M;
    cin >> M;
    int num[21];
    for (int m = 0; m < M; ++m) {
        int N, K;
        cin >> N >> K;
        for (int i = 0; i < N; ++i)
            cin >> num[i];
        cout << insertMultipleSign(num, N, K) << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值