插入乘号
Time Limit: 1000 MS Memory Limit: 1000 KB
- Description
给出N个1-9的数字 (v1,v2,…,vN), 不改变它们的相对位置, 在中间加入K个乘号和N-K-1个加号, 括号随便加,
使最终结果最大。因为乘号和加号一共就是N-1个,所以恰好每两个相邻数字之间都有一个符号。
例如: N=5, K=2,5个数字分别为1、2、3、4、5,可以进行如下运算:
1*2*(3+4+5)=24 1*(2+3)*(4+5)=45 (1*2+3)*(4+5)=45
等等.
- Input
第一行输入M(M<=10)表示有M组数据。每组数据输入两整数N和K(N<=20, K<20), 接下来输入N个1-9的数字。
- Output
输出M行正整数,第i行表示第i组数据的最大结果, 你可能需要用long long类型存储结果。
- Sample Input
2
5 2
1 2 3 4 5
6 3
1 2 3 4 5 6
- Sample Output
120
720
C++代码实现
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
long long insertMultipleSign(int num[], int N, int K) {
// sum[i][j] = num[i]+num[i+1]+...+num[j] = sum{num[k]},k from i to j
static long long sum[21][21] = { 0 };
//定义dp[i][k]:向前i个数插入恰好k个乘法运算符(i-k-1个加法运算符)获得的最大值。
static long long dp[21][21] = {-1};
// 提前计算sum[i][j]
for (int i = 1; i <= N; ++i) {
// sum[i][i - 1] = 0;
for (int j = i; j <= N; ++j) {
sum[i][j] = sum[i][j - 1] + num[j - 1];
}
}
// 初始时dp[i][0]表示前i个数中没有乘法运算符(即全是加法运算符),
// 所以dp[i][0] = sum{num[k]},k from 1 to i
for (int i = 1; i <= N; ++i) {
dp[i][0] = sum[1][i];
}
//对于k个乘法运算符和i个数,考虑所有可能的分割m,
//通过 在前m个数中插入k-1个乘法运算符 和 计算后i-m个数的和,并将两者计算结果相乘
// 使得i个数中插入k个乘法运算符后的计算结果最大
// dp[i][k] = max{dp[m][k-1] * sum[m+1][i]},m from k to i
// 这里dp[m][k-1]是前m+1个数中插入k-1个乘法运算符的最大值
for (int k = 1; k <= K; ++k) {
for (int i = k+1; i <= N; ++i) {
dp[i][k] = -1;
for (int m = k; m < i; ++m) {
dp[i][k] = max(dp[i][k], dp[m][k - 1] * sum[m + 1][i]);
}
}
}
return dp[N][K];
}
int main() {
int M;
cin >> M;
int num[21];
for (int m = 0; m < M; ++m) {
int N, K;
cin >> N >> K;
for (int i = 0; i < N; ++i)
cin >> num[i];
cout << insertMultipleSign(num, N, K) << endl;
}
return 0;
}
2254

被折叠的 条评论
为什么被折叠?



