高斯与最小二乘法的故事

本文讲述了意大利天文学家朱赛普·皮亚齐发现谷神星后,24岁的高斯运用最小二乘法计算轨道的故事。高斯的这种方法在9年后才公开,而法国科学家勒让德在同一时期独立发现但未受关注。最小二乘法是一种广泛应用于数据处理的数学工具,用于优化模型和估计误差。文中还介绍了最小二乘法的损失函数公式和矩阵表示形式。
摘要由CSDN通过智能技术生成

历史故事

1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。

随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。

时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥伯斯根据高斯计算出来的轨道重新发现了谷神星。

别人问高斯,你用什么方法计算的,高斯说保密~

藏着掖着长达9年之久,最后高斯将其使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中,而法国科学家勒让德于1806年独立发现"最小二乘法",但因不为世人所知而默默无闻。两人曾为谁最早创立最小二乘法原理发生争执。1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,见高斯-马尔可夫定理。

公式介绍

最小二乘法是一种在误差估计、不确定度、系统辨识及预测、预报等数据处理诸多学科领域得到广泛应用的数学工具。

公式如下:
J ( θ ) = 1 2 ∑ i = 0 n ( h θ ( x i ) − y ) ( h θ ( x i ) − y ) J(\theta) = \frac{1}{2}\sum\limits_{i = 0}^n(h_{\theta(x_i)} - y)(h_{\theta(x_i)} - y) J(θ)=21i=0n(hθ(xi)y)(hθ(xi)y)

J ( θ ) J(\theta) J(θ)表示损失函数; y y y 表示目标值; h θ ( x i ) h_{\theta(x_i)} hθ(xi) 表示预测函数,即方程、模型、算法。

下面是矩阵表示:

J ( θ ) = 1 2 ( X θ − y ) T ( X θ − y ) J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y) J(θ)=21(y)T(y)



我教授的代码,100年后,照样可以运行无误!欢迎你加入,深入学习!
代码点亮人生,代码改变世界~

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MathDance

代码点亮人生,代码改变世界……

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值