利用Python进行数据分析
文章平均质量分 77
《利用Python进行数据分析》是所有进行数据分析人员必读的一本书!
读技术类的书,太枯燥了,读不下去!这是问题所在~
就让我来为你解读吧,庖丁解书,将知识点拆解成小小的一部分,保证你能够学会,应用!
这正是,视频的价值(本博客,既有文字,也有视频)
这一次,我们来一个庖丁解书,看个通透,学个明白~
优惠券已抵扣
余额抵扣
还需支付
¥9.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
MathDance
通过代码让数学跳动,开启无限可能
展开
-
1.8、NumPy使用
文章目录NumPy介绍NumPy创建NumPy数据类型NumPy运算NumPy索引切片NumPy高级索引NumPy形状改变NumPy广播NumPy线性代数NumPy介绍NumPy 是一个运行速度非常快的数学库,主要用于数组计算:一个强大的N维数组对象 ndarray广播功能函数整合 C/C++/Fortran 代码的工具线性代数、傅里叶变换、随机数生成等功能安装指令:pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple原创 2021-09-02 15:07:02 · 292 阅读 · 0 评论 -
1.7、Python基本语法
文章目录基本语法变量缩进英文符号注释属性和方法数据类型字符串整数浮点数布尔值循环for循环while循环条件判断if … else …if … elif … else……三元表达式列表生成式基本语法变量当在Python中创建变量(或名字),你就在等号右边创建了一个对这个变量的引用(就是赋值)。a = 'Hello World!'b = 1024pi = 3.14e = 2.718print(a,b,pi,e)缩进Python使用空白字符(tab键)来组织代码。冒号标志着缩进代码块的开始原创 2021-07-30 11:59:08 · 219 阅读 · 0 评论 -
1.6、jupyter notebook使用技巧
文章目录自省与补全常用快捷键魔法指令扩展插件安装教程在文末,有视频解析!!!(你一定要听~)自省与补全在变量前后使用问号?,可以显示对象的信息。输入变量后,按下Tab键,会显示变量的相关属性方法。常用快捷键运行代码:Shift + Enter增加一行:a(向上)、b(向下)查看方法详情:Shift + Tab更多快捷键魔法指令IPython中特殊的命令(Python中没有)被称作“魔术”命令。这些命令可以使普通任务更便捷,更容易控制IPython系统。魔术命令是在指令前添加百分号%前原创 2021-07-22 12:04:06 · 729 阅读 · 2 评论 -
1.5、Python解释器IPython与Jupyter notebook
文章目录命令行运行命令行直接写代码命令行运行文件IPythonIPython终端jupyter notebook命令行运行命令行直接写代码视频教程Python是解释性语言。Python解释器同一时间只能运行一个程序的一条语句。标准的交互Python解释器可以在命令行中通过键入python命令打开:C:\Users\likai>pythonPython 3.8.10 (tags/v3.8.10:3d8993a, May 3 2021, 11:48:03) [MSC v.1928 64 bi原创 2021-07-15 17:15:43 · 305 阅读 · 0 评论 -
1.4、环境安装与搭建
文章目录一步步搭建环境集成开发环境搭建一步步搭建环境初学者,往往,搞不定Python安装与环境变量!看过来,这里的就是为小白准备的~Python的版本一直在升级。这里我选择了3.8版本,同时也安装3.7的版本。不同版本可以在电脑上兼容。视频教程安装相应的Python库,这里安装了numpy、jupyter以作演示。并启动Jupyter,就可以在浏览器中编写代码了。视频教程有了Jupyter,对其进行相应配置,提高生产力。视频教程集成开发环境搭建集成开发环境,使用Anaconda,它是一个软件,原创 2021-07-15 14:48:52 · 191 阅读 · 2 评论 -
1.3、重要的Python库
文章目录NumPypandasmatplotlibIPython和JupyterSciPyscikit-learnstatsmodels考虑到那些还不太了解Python科学计算生态系统和库的读者,下面我先对各个库做一个简单的介绍。NumPyNumPy(Numerical Python的简称)是Python科学计算的基础包。本书大部分内容都基于NumPy以及构建于其上的库。它提供了以下功能(不限于此):快速高效的多维数组对象ndarray。用于对数组执行元素级计算以及直接对数组执行数学运算的原创 2021-07-14 15:37:06 · 192 阅读 · 0 评论 -
1.2、为什么要选择Python进行数据分析
文章目录Python进行数据分析历史Python作为胶水语言解决"两种语言"问题为什么选择PythonPython进行数据分析历史许许多多的人都很容易爱上Python这门语言。正所谓:人生苦短,我用Python!自从1991年诞生以来,Python现在已经成为最受欢迎的动态编程语言之一。在众多解释型语言中,由于各种历史和文化的原因,Python发展出了一个巨大而活跃的科学计算(scientific computing)社区。在过去的10年,Python从一个边缘的科学计算语言,成为了数据科学、机器学原创 2021-07-14 15:10:23 · 276 阅读 · 0 评论 -
1.1、本书内容介绍
文章目录学习目标什么样的数据?学习目标本专栏讲的是利用Python进行数据控制、处理、整理、分析等方面的具体细节和基本要点。我的目标是介绍Python编程和用于数据处理的库和工具环境,掌握这些,可以让你成为一个数据分析专家。虽然本书的标题是《利用Python进行数据分析》,重点却是Python编程、库,以及用于数据分析的工具。这就是数据分析要用到的Python编程。大家在学习的过程中,可以购买这本书。什么样的数据?当书中出现"数据"时,究竟指的是什么呢?主要指的是结构化数据(structure原创 2021-07-14 14:25:02 · 351 阅读 · 0 评论