本篇主要介绍查找算法中的二分法查找,由于我们之前一直用的数组开篇,所以接下来也会用数组来进行实现。对于上一篇的线性查找,效率非常低,原因也很简单,就是因为,循环遍历找元素,从头到尾。
目录
二分法查找
二分法查找适用于数据量较大时,但是数据需要先排好顺序。主要思想是:(设查找的数组区间为array[low, high])
定义
二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。
时间复杂度
1.最坏情况查找最后一个元素(或者第一个元素)
Master定理 T(n)=T(n/2)+O(1)
所以T(n)=O(log2n)
2.最好情况查找中间元素O(1)查找的元素即为中间元素
(奇数长度数列的正中间,偶数长度数列的中间靠左的元素)
空间复杂度
S(n)=logn
平均查找长度
(n+1/n)*(log2(n+1))-1
算法要求
1.必须采用顺序存储结构。
2.必须按关键字大小有序排列。
比较次数
计算公式:
当顺序表有n个关键字时:
查找失败时,至少比较a次关键字;查找成功时,最多比较关键字次数是b。
注意:a,b,n均为正整数。
代码实现(Java)
二分法查找的思路如下:
(1)首先,从数组的中间元素开始搜索,如果该元素正好是目标元素,则搜索过程结束,否则执行下一步。
(2)如果目标元素大于/小于中间元素,则在数组大于/小于中间元素的那一半区域查找,然后重复步骤(1)的操作。
(3)如果某一步数组为空,则表示找不到目标元素。
如果找7,先对折,中间为5。
7>5,拿出 5 6 7 8 9,进行对折,卡,中间为7,两次搞定O(2)。
/**
* 查找算法之二分法查找
*
* @param args
* @return void
* @author Soinice
* @date 2019/4/20 23:24
*/
public static void main(String[] args) {
// 目标数组
int[] arr = {1, 2, 3, 4, 5, 6, 7, 8, 9};
// 目标元素
System.out.println("请输入要查找的元素:");
Scanner scanner = new Scanner(System.in);
int target = scanner.nextInt();
// 记录开始位置
int begin = 0;
// 记录结束位置
int end = arr.length - 1;
// 记录中间位置(每次会变化)
int mid = (begin + end) / 2;
// 目标元素所在的下标
int index = -1;
// 循环查找
while (begin <= mid && mid > 0) {
// 判断中间的这个元素是不是要查找的元素
if (arr[mid] == target) {
index = mid;
break;
} else {
// 中间这个元素是不是要查的元素
// 判断中间这个元素是不是比目标元素大
if (arr[mid] > target) {
// 把结束位置调整到中间位置前一个位置
end = mid - 1;
} else {
// 中间这个元素比目标元素小
// 把开始位置调整到中间位置的后一个位置
begin = mid + 1;
}
// 取出新的中间位置
mid = (begin + end) / 2;
}
}
// 打印目标元素的下标
System.out.println("目标元素的下标为:" + index);
}
运行结果:
总结
优缺点
Bentley在他的著作《Writing Correct Programs》中写道,90%的计算机专家不能在2小时内写出完全正确的二分搜索算法。问题的关键在于准确地制定各次查找范围的边界以及终止条件的确定,正确地归纳奇偶数的各种情况,其实整理后可以发现它的具体算法是很直观的。
折半查找法的优点是比较次数少,查找速度快,平均性能好;
其缺点是要求待查表为有序表,且插入删除困难。
因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
参考文献:
百度百科:二分法查找
百度百科:二分查找
百度百科:折半查找法