POJ 1221 整数分解 DP

POJ 1221


 题意:将给定的整数N分解为多个整数的和 要求这个序列为回文串 且前半部分为非递减序列
 dp[i,j] 表示将整数i分解为以j为开头的序列的方案数
得到状态转移公式 dp[i,j] = dp[i - 2 * j][k] (k * 2 <= i - 2 * j ^ k >= j )  如果i - j * 2 >= j :dp[i,j]++
以上公式 的意思为 以j为将i分解的方案数 等于 以k k大于等于j 将 i - 2 * j 分解的方案数 如果以j将i分解 能分解为形如j (i - j * 2) j 的正确格式则答案加一

代码如下:

#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#define sf scanf
#define pf printf
using namespace std;
typedef long long LL;
LL dp[1000][1000];  // dp(i,j)为左右为j时组成i的方案数

LL dps(int i,int j){
    if(j * 2 > i) return dp[i][j] = 0;
    if(j * 2 == i) return dp[i][j] = 1;
    if(dp[i][j] != -1) return dp[i][j];
    dp[i][j] = (i - 2 * j >= j);
    for(int k = j;k * 2 <= i - j * 2;++k){
        dp[i][j] += dps(i - j * 2,k);
    }

    return dp[i][j];
}


int main(){
    memset(dp,-1,sizeof(dp));
    int n;
    while( sf("%d",&n) != EOF && n ){
        LL ans = 1;
        for(int i = 1;i <= n;++i){
            ans += dps(n,i);
        }
        pf("%d %lld\n",n,ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值