51Nod_1418 放球游戏
http://www.51nod.com/Challenge/Problem.html#!#problemId=1418
题目
有N个球排成一排,每个球都是R、G、B三种颜色之一。现在想重新排列这一排球,你要重复以下过程N次:
1)从原来的那排球中的最左侧取出一个球;
2)将取出的求插入新的球排列的任意位置,即可以放在最左或最右端,也可以插入那排球的任意两个相邻球之间;
3)计算这轮得分,如果是第一个球那么得0分;如果放在两端(最左或最右端)得分为除了新放入的球外,剩余球的颜色种数;如果放在两个球之间,那么得分为这个新放入的球左侧所有球的颜色种数与这个球右侧所有球的颜色种数的和。(解释一下“颜色种数”:一堆球里出现的不同颜色个数,对应这里的得分就是一种颜色得一分,多个球同色只算一次得分。)那么在最优操作下,最多能得到的总分是多少?
输入
多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5每组测试数据有相同的结构构成:每组数据一行,只有一个有‘R’,‘G’,‘B’三个字符构成的字符串S,表示原始的球排列。其中,S包含字符个数不超过50,且无空串。
输出
每组数据一行输出,即最大的总得分。
样例输入
3
RGB
RGGRBBB
RRRGBRR
样例输出
3
21
16
分析
贪心法,只要某种颜色的球的个数大于等于2个,每次就能将这种球算2分。具体看程序
C++程序
#include<iostream>
#include<string>
using namespace std;
int main()
{
int t;
cin>>t;
while(t--)
{
string s;
cin>>s;
int R=0,G=0,B=0,ans=0;
for(int i=0;i<s.length();i++)
{
ans+=R+G+B;
if(s[i]=='R')
R=min(R+1,2);
else if(s[i]=='G')
G=min(G+1,2);
else
B=min(B+1,2);
}
cout<<ans<<endl;
}
return 0;
}