斯坦福cs231n计算机视觉——KNN,线性分类器(上)

本文介绍了斯坦福cs231n课程中关于计算机视觉的内容,包括数据驱动方法、KNN算法和线性分类器的基础知识。强调了验证集的重要性,避免在测试集上进行调优,以及交叉验证的概念。同时探讨了线性分类器的几何解释,并提及图像数据预处理的常规步骤。作业涉及到Python和numpy的矩阵操作。
摘要由CSDN通过智能技术生成

week 1  10/11-10/14

计算机视觉综述:cs231n_2018_lecture01

观看视频p1和p2热身,了解计算机视觉概述以及历史背景。观看p3了解整门课程的大纲。

 

学习数据驱动的方法和KNN算法和线性分类器[上]:cs231n_2018_lecture02

观看视频p4,p5和p6学习图像分类笔记上(链接:https://zhuanlan.zhihu.com/p/20894041?refer=intelligentunit,图像分类笔记下链接:https://zhuanlan.zhihu.com/p/20900216?refer=intelligentunit )和线性分类笔记上(链接:https://zhuanlan.zhihu.com/p/20918580?refer=intelligentunit

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值