机器学习----模型评估与选择

第二章-模型评估与选择

一、概览:对于同一数据集而言,给定不同的算法,会提取不同的模型,甚至对于同一算法给定不同的参数,也会得到不同的模型,选择最佳的模型的过程称为模型选择。模型选择会遵循一定的标准,首先需要将数据集分成若干部分,一部分用于训练模型,一部分用于测试模型的泛化能力,对于测试的结果给定一个性能参数,从数值上比较不同模型的泛化能力,通过复杂的比较检验方法,对不同的模型进行比较,最后对于模型的性能尝试给出一个解释。

1、经验误差与过拟合。

2、对学习器的泛化误差进行评估的方法:留出法,交叉验证法,自助法。

3、性能度量:衡量模型泛化能力的评价标准。错误率,精度,查准率,查全率,F1,ROC,AUC,代价敏感错误率与代价曲线。

4、比较检验:对学习器的性能进行评估比较,假设检验,交叉验证t检验,McNemar检验,Friedman检验,Nemenyi后续检验。

5、偏差与方差,了解学习算法为什么具有这样的性能,偏差-方差分解是解释学习算法泛化性能的一种重要工具。

二,名词解释:

1、错误率:分类错误的样本数占样本总数的比例。

2、精度:分类正确的样本数占样本总数的比例,错误率+精度=1。

3、误差:学习器的实际预测输出与样本真实输出之间的差异。

4、训练/经验误差:学习器在训练集上的误差。

5、泛化误差:学习器在新样本上的误差。

6、过拟合:学习的学习能力过强,将训练样本自身的一些特点当做了所有潜在样本都会具有的一般性质。

7、欠拟合:学习能力过弱,对学习样本的一般性质尚未学好。

三,评估方法

当只有一个数据集,在既要训练又要测试的时候,我们必须对数据集进行一定的处理,从中产生出数据集S和训练集T,以下是常见的几种方法:

1、留出法:

将数据集D直接划分为两个互斥的集合,一个作为训练集S,另一个作为测试集T。使用留出法应采用若干次随机划分,重复进行试验评估后取均值作为结果

2、交叉验证法:

将数据集D划分为k个大小相似的互斥子集,每次用k-1个子集的并集作为训练集S余下的那个子集作为测试集T。此时可以进行k次训练和测试,最终返回这k个测试结果的均值,特别的,如果数据集D中包含m个样本,令k = m则得到交叉验证法的一个特例,留一法。

       

3,自助法:

给定包含m个样本的数据集D,对D中的样本进行m次有放回的抽样,并把每次抽取的样本拷贝放入D`中,将D`用作训练集S,将D中不在D`内的样本即D\D`用作测试集T。

D中的一部分样本在m次采样中始终不被采到的概率是(1-1/m)^m,取极限后约等于36.8%。

自助法更适用于数据集较小,难以有效划分训练集,测试集的时候使用。

四、性能度量

1、性能度量:衡量模型泛化能力的评价标准。

2、回归任务最常用的性能度量是均方误差:

3、分类任务中常用的性能度量

(1)对于样例集D,

         分类错误率定义为:

          

 

        精度则定义为:

          

(2)查准率,查全率与F1

       FN:False Negative,即“假反例”。被判定为负样本,但事实上是正样本。

​       FP:False Positive,即“假正例”。被判定为正样本,但事实上是负样本。

​       TN:True Negative,即“真反例”。被判定为负样本,事实上也是负样本。

​       TP:True Positive,即“真正例”。被判定为正样本,事实上也是正样本。

       查准率:真正例的个数,占我们所认为的正确的总个数的比例。

       查全率:真正例的个数,占整个数据集里中的正确的总个数的比例。

       P(查准率)= TP/(TP+FP)

       R(查全率)=TP/(TP+FN)

     例如,在100个西瓜中,我们认定当中的80个是好瓜。而这80个好瓜中,真正的好瓜数是60个。那么此时“查准率”是                60/80*100%=75%

    又如,在100个西瓜中,有80个是真正的好瓜。在我们认定的好瓜数中,有40个是真正的好瓜。那么此时“查全率”是40/80*100%=50%

查准率与查全率是一对矛盾的度量,实际中往往会综合考虑这两者,去这两者的综合性能更好的。“尽量做到既查的准又查的全”。

平衡点BEP就是人们设计的一个综合考虑查准率与查全率的性能度量,它是查准率=查全率时的取值。

F1度量:

 

F1度量的一般形式Fβ:

其中,β>0度量了查全率对查准率的相对重要性。β=1时,退化为标准的F1β>1时查全率有更大影响;β<1时,查准率有更大影响。

(3)RUC与AUC

    ROC(Receiver Operating Characteristic)曲线和AUC(Area Under the Curve)值常被用来评价一个二值分类器(binary classifier)  的优劣。ROC曲线的面积就是AUC,AUC用于衡量“二分类问题”机器学习算法性能(泛化能力)。

(4)代价敏感错误率与代价曲线

       本质上就是为权衡不同类型错误所造成的不同损失,可为错误赋予非均等代价unequal cost。

五、比较检验

     1、比较学习器的性能

       (1)假设检验

                 假设检验中的假设就是对学习器泛化错误率分布的某种判断或猜想。

       (2)交叉验证t检验

       (3)McNemar检验

       (4)Friedman检验与Nemenyi后续检验

     2、偏差与方差

          偏差: 描述模型输出结果的期望与样本真实结果的差距。 
          方差: 描述模型对于给定值的输出稳定性。 

           

### 回答1: 机器学习模型评估选择和验证是指评估模型的性能、从多个模型中选择最佳模型,并验证模型的泛化能力。常用的评估方法包括准确率、精确率、召回率、F1 分数、ROC 曲线和 AUC 等。常用的选择方法包括交叉验证、超参数调优、学习曲线分析等。 ### 回答2: 机器学习的目标是通过训练来构建模型,以便能够高效地预测未知数据。但是,模型的准确性不仅取决于所使用的算法,还取决于其它因素,例如数据和参数设置。 模型评估能够帮助我们了解模型性能的好坏。评估算法的过程通常涉及到数据划分、交叉验证和各种评估指标。一般来说,数据划分的过程将数据集拆分成训练集和测试集。用训练集来构建模型并进行参数调整,然后使用测试集来衡量模型的性能。交叉验证是在数据集合上的一个更安全和更可靠的方法,它将原始数据集划分成K个互斥的子集,并使用K-1个子集来训练模型,用剩余的子集来评估模型的性能选择正确的模型非常关键,因为模型的性能可以直接影响结果的准确性。选择模型的一个重要因素是如何表示数据集。数据可以使用多种方式表示,而不同的数据表示方式有不同的优劣。选择适当的模型是当然的,但是我们还应该使用技术来优化模型,并防止模型过度拟合或欠拟合。 模型验证是评估模型如何执行任务的最终步骤。验证后,我们可以使用模型进行预测并将其应用于新数据。如果模型的性能不符合要求,可以通过重新评估、更改数据集或改变模型参数来尝试改善。模型验证是机器学习流程中非常重要的一部分,可以确保我们的模型效果良好,从而为我们提供可靠的预测结果。 总之,机器学习是一种建立复杂模型的方法,不同的算法、数据表示方式和参数会影响其性能。为了找到最佳模型,我们需要进行模型评估选择和验证等工作。这些步骤是机器学习流程的关键组成部分,可以帮助我们构建高效且准确的模型,从而应对各种实际应用场景。 ### 回答3: 机器学习是一种人工智能领域的重要技术,它允许计算机从历史数据中学习,建立预测模型,并用于未来的数据预测和决策。模型评估选择与验证是机器学习过程中的重要一环,以保证模型的准确性、稳定性和泛化能力。 模型评估的目的是检验模型的表现,并度量其优劣。常用的评估指标包括精确度、召回率、F1值等,这些指标可以用于比较不同模型之间的性能表现。评估模型时,通常需要将数据集划分为训练集和测试集,训练集用于训练模型,而测试集用于评估模型性能。评估模型的结果可以指导我们调整模型的参数,提高模型的预测精度。 模型选择是在多个模型中选择最合适的模型。常用的模型选择方法包括交叉验证、留一法等。交叉验证是将数据集分成k个子集,每个子集轮流作为测试集进行模型评估,其余部分用于训练模型,最后将测试集误差取平均值作为综合误差来评估模型的性能。 模型验证是对模型的泛化能力的验证。泛化能力是指模型对未知数据的预测精度,即模型是否能够对新数据进行较好的预测。在模型验证中,需要将数据集划分为训练集、验证集和测试集。在训练集中训练模型,在验证集上调整模型参数,并在测试集上验证模型的泛化能力。常用的验证方法包括留存法、k折交叉验证等。 综上所述,模型评估选择与验证对于机器学习中的预测模型非常重要。这些技术可以保证模型的准确性和稳定性,并提高模型的泛化能力,为数据分析和预测提供可靠依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值