变分模态分解(VMD)

变分模态分解(VMD)

VMD(Variational mode decomposition)是一种自适应、完全非递归的模态变分和信号处理的方法。该技术具有可以确定模态分解个数的优点,其自适应性表现在根据实际情况确定所给序列的模态分解个数,随后的搜索和求解过程中可以自适应地匹配每种模态的最佳中心频率和有限带宽,并且可以实现固有模态分量(IMF)的有效分离、信号的频域划分、进而得到给定信号的有效分解成分,最终获得变分问题的最优解。它克服了EMD方法存在端点效应和模态分量混叠的问题,并且具有更坚实的数学理论基础,可以降低复杂度高和非线性强的时间序列非平稳性,分解获得包含多个不同频率尺度且相对平稳的子序列,适用于非平稳性的序列,VMD的核心思想是构建和求解变分问题。
首先构造变分问题,假设原始信号f被分解为k个分量,保证分解序列为具有中心频率的有限带宽的模态分量,同时各模态的估计带宽之和最小,约束条件为所有模态之和与原始信号 相等,则相应约束变分表达式为
在这里插入图片描述 (1)
式中: 为需要分解的模态个数(正整数), 、 分别对应分解后第 个模态分量和中心频率, 为狄拉克函数, 为卷积运算符。
然后求解式(1),引入Lagrange乘法算子λ,将约束变分问题转变为非约束变分问题&#

### 变分模态分解 (VMD) 的基本原理 变分模态分解是一种自适应的信号处理技术,能够有效地将复杂信号分解成若干个固有模态函数(IMF),这些IMF代表了不同频率范围内的特征成分[^1]。 ### VMD算法的主要参数设置 对于VMD的应用而言,有几个重要的参数需要设定: - **K**: 需要提取的模态数量 - **α**: 控制带宽惩罚项强度的正则化因子,默认值通常设为2000 - **τ**: 时间域内核偏移量,默认情况下可以设为0 - **DC**: 是否包含直流分量选项,一般默认不选即False - **init**: 初始化中心频率的方式,可采用均匀分布或其他特定方式初始化 - **tol**: 收敛精度阈值,决定了迭代停止条件 上述参数的选择会直接影响到最终的结果质量以及计算效率[^2]。 ### 使用Python实现基于VMD的信号去噪过程 下面给出一段利用PyVMD库来完成简单一维时间序列数据去噪的例子代码。此例子假设已经安装好了`pyvmd2`包。 ```python from pyvmd import vmd import numpy as np import matplotlib.pyplot as plt def add_noise(signal, noise_level=0.5): """向原始信号加入高斯白噪声""" noisy_signal = signal + noise_level * np.random.randn(len(signal)) return noisy_signal # 创建测试用纯净正弦波形作为原信号 t = np.linspace(0, 1, 400) original_signal = np.sin(2*np.pi*5*t) # 加入随机噪声得到含噪版本 noisy_data = add_noise(original_signal) # 应用VMD进行分解并重构去除高频干扰后的低频部分 decomposed_modes, _ = vmd.VariationalModeDecomposition().run(noisy_data, K=3) denoised_result = decomposed_modes.sum(axis=0) plt.figure(figsize=(8,6)) plt.subplot(3,1,1) plt.plot(t, original_signal,'b') plt.title('Original Signal') plt.subplot(3,1,2) plt.plot(t, noisy_data,'r') plt.title('Noisy Data') plt.subplot(3,1,3) plt.plot(t, denoised_result,'g') plt.title('Denoised Result via VMD') plt.tight_layout() plt.show() ``` 这段程序首先定义了一个辅助函数用来模拟带有加性高斯白噪声的真实世界测量情况;接着构建了一组理想化的周期波动模式作为待分析对象;最后通过调用`VariationalModeDecomposition()`类中的`run()`方法执行实际的VMD运算,并选取适当数量(K=3)的IMFs相加以获得较为平滑干净的目标估计值[^3]。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值