cs231n assignment1 features

features

前几个作业都是直接将图片的原始像素作为模型输入,本次作业是通过使用定向梯度直方图Histogram of Oriented Gradients (HOG)和HSV颜色空间。简单说,HOG不考虑图片的颜色信息,只捕获图片的纹理;而颜色直方图只考虑颜色,不考虑纹理。使用这两个方法一起工作,效果会更好。

Train SVM on features
learning_rates = [0.8e-7,1e-7,1.2e-7,1.4e-7]
regularization_strengths = [5e4,5.1e4]

for lr in learning_rates:
    for rs in regularization_strengths:
        svm = LinearSVM()
        loss_history = svm.train(X_train_feats,y_train,learning_rate=lr,reg=rs,num_iters=1000)
        train_pred = svm.predict(X_train_feats)
        train_acc = np.mean(train_pred == y_train)
        val_pred = svm.predict(X_val_feats)
        val_acc = np.mean(val_pred == y_val)
        if val_acc > best_val:
            best_val = val_acc
            best_svm 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值