常用统计量

文章目录

1. 统计量

  • 统计量

    X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自总体 X X X的一个样本, g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn) X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的函数,若 g g g中不含未知参数,则称 g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn)是一个统计量

  • 常用统计量

    1. 样本均值

      X ‾ = 1 n ∑ i = 1 n X i \overline {X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_i X=n1i=1nXi

    2. 样本方差

      未修正的样本方差 : S 0 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 = 1 n ( ∑ i = 1 n X i 2 − n X ‾ 2 ) S_0^2=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2=\frac{1}{n}(\sum\limits_{i=1}^{n}X_i^2-n\overline{X}^2) S02=n1i=1n(XiX)2=n1(i=1nXi2nX2)

      修正的样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ‾ 2 ) S^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2=\frac{1}{n-1}(\sum\limits_{i=1}^{n}X_i^2-n\overline{X}^2) S2=n11i=1n(XiX)2=n11(i=1nXi2nX2)

      不少人会有疑问,为啥修正样本方差的分母是 n − 1 n-1 n1,这里给予数学证明

      证明

      我们首先假设总体 X X X的期望和方差存在,有 E ( X ) = μ , D ( X ) = σ 2 E(X)=\mu,D(X)=\sigma^2 E(X)=μ,D(X)=σ2,此时有以下三个等式成立

      E ( X ‾ ) = μ , D ( X ‾ ) = σ 2 n E(\overline{X})=\mu,D(\overline{X})=\frac{\sigma^2}{n} E(X)=μ,D(X)=nσ2,稍后会给予证明.

      为了证明修正的样本方差为无偏估计,也就是我们要证明样本方差和总体方差一样,即 E S 2 = σ 2 E{S^2}=\sigma^2 ES2=σ2

      证明如下

      E S 2 = E [ 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 ] = E { 1 n − 1 ∑ i = 1 n [ ( X i − μ ) − ( X ‾ − μ ) ] 2 } = 1 n − 1 E [ ∑ i = 1 n ( X i − μ ) 2 − 2 ∑ i = 1 n ( X i − μ ) ( X ‾ − μ ) + ∑ i = 1 n ( X ‾ − μ ) 2 ] = 1 n − 1 E [ ∑ i = 1 n ( X i − μ ) 2 − 2 ( X ‾ − μ ) ∑ i = 1 n ( X i − μ ) + n ( X ‾ − μ ) 2 ] = 1 n − 1 E [ ∑ i = 1 n ( X i − μ ) 2 − 2 ( X ‾ − μ ) ( ∑ i = 1 n X i − ∑ i = 1 n μ ) + n ( X ‾ − μ ) 2 ] = 1 n − 1 E [ ∑ i = 1 n ( X i − μ ) 2 − 2 ( X ‾ − μ ) ( n X ‾ − n μ ) + n ( X ‾ − μ ) 2 ] = 1 n − 1 E [ ∑ i = 1 n ( X i − μ ) 2 − n ( X ‾ − μ ) 2 ] = 1 n − 1 [ E ∑ i = 1 n ( X i − μ ) 2 − n E ( X ‾ − μ ) 2 ] = 1 n − 1 [ ∑ i = 1 n E ( X i − μ ) 2 − n D X ‾ ] = 1 n − 1 [ ∑ i = 1 n D X i − n D X ‾ ] = 1 n − 1 ( n σ 2 − n 1 n σ 2 ) = σ 2 \begin{aligned} E{S^2} &= E\bigg[\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2\bigg] \\&= E\bigg\{\frac{1}{n-1}\sum\limits_{i=1}^{n}\big[(X_i-\mu)-(\overline{X}-\mu)\big]^2\bigg\}\\&= \frac{1}{n-1}E\bigg[\sum\limits_{i=1}^{n}(X_i-\mu)^2-2\sum\limits_{i=1}^{n}(X_i-\mu)(\overline{X}-\mu)+\sum\limits_{i=1}^{n}(\overline{X}-\mu)^2\bigg]\\&= \frac{1}{n-1}E\bigg[\sum\limits_{i=1}^{n}(X_i-\mu)^2-2(\overline{X}-\mu)\sum\limits_{i=1}^{n}(X_i-\mu)+n(\overline{X}-\mu)^2\bigg]\\&= \frac{1}{n-1}E\bigg[\sum\limits_{i=1}^{n}(X_i-\mu)^2-2(\overline{X}-\mu)(\sum\limits_{i=1}^{n}X_i-\sum\limits_{i=1}^{n}\mu)+n(\overline{X}-\mu)^2\bigg]\\&= \frac{1}{n-1}E\bigg[\sum\limits_{i=1}^{n}(X_i-\mu)^2-2(\overline{X}-\mu)(n\overline{X}-n\mu)+n(\overline{X}-\mu)^2\bigg]\\&= \frac{1}{n-1}E\bigg[\sum\limits_{i=1}^{n}(X_i-\mu)^2-n(\overline{X}-\mu)^2\bigg]\\&= \frac{1}{n-1}\bigg[E\sum\limits_{i=1}^{n}(X_i-\mu)^2-nE(\overline{X}-\mu)^2\bigg]\\&= \frac{1}{n-1}\bigg[\sum\limits_{i=1}^{n}E(X_i-\mu)^2-nD\overline{X}\bigg]\\&= \frac{1}{n-1}\bigg[\sum\limits_{i=1}^{n}DX_i-nD\overline{X}\bigg]\\&=\frac{1}{n-1}(n\sigma^2-n\frac{1}{n}\sigma^2)\\&=\sigma^2\end{aligned} ES2=E[n11i=1n(XiX)2]=E{n11i=1n[(Xiμ)(Xμ)]2}=n11E[i=1n(Xiμ)22i=1n(Xiμ)(Xμ)+i=1n(Xμ)2]=n11E[i=1n(Xiμ)22(Xμ)i=1n(Xiμ)+n(Xμ)2]=n11E[i=1n(Xiμ)22(Xμ)(i=1nXii=1nμ)+n(Xμ)2]=n11E[i=1n(Xiμ)22(Xμ)(nXnμ)+n(Xμ)2]=n11E[i=1n(Xiμ)2n(Xμ)2]=n11[Ei=1n(Xiμ)2nE(Xμ)2]=n11[i=1nE(Xiμ)2nDX]=n11[i=1nDXinDX]=n11(nσ2nn1σ2)=σ2

    3. 样本标准差

      S = S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S=\sqrt{S^2} = \sqrt{\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2} S=S2 =n11i=1n(XiX)2

    4. 样本 k k k阶原点矩

      A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯ A_k=\frac{1}{n}\sum\limits_{i=1}^{n}X_i^k,\quad k=1,2,\cdots Ak=n1i=1nXik,k=1,2,

      一阶原点矩 A 1 = 1 n ∑ i = 1 n X i = X ‾ A_1=\frac{1}{n}\sum\limits_{i=1}^{n}X_i=\overline{X} A1=n1i=1nXi=X ,即 样本的一阶原点矩就是样本均值

    5. 样本 k k k阶中心距

      A k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 2 , 3 , ⋯ A_k=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\overline{X})^k,\quad k=2,3,\cdots Ak=n1i=1n(XiX)k,k=2,3,

      A 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 = S 0 2 = n − 1 n S 2 A_2=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2=S_0^2=\frac{n-1}{n}S^2 A2=n1i=1n(XiX)2=S02=nn1S2 即样本2阶中心距为样本的未修正方差

  • 关于样本均值和样本方差的性质

    设总体 X X X的均值和方差存在(不管总体 X X X服从什么分布,只要它的均值和方差存在),且有 E ( X ) = μ , D ( X ) = σ 2 E(X)=\mu,D(X)=\sigma^2 E(X)=μ,D(X)=σ2 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自总体 X X X的一个样本,则有 E ( X ‾ ) = μ , D ( X ‾ ) = σ 2 n , E S 2 = σ 2 E(\overline{X})=\mu,D(\overline{X})=\frac{\sigma^2}{n},E{S^2}=\sigma^2 E(X)=μ,D(X)=nσ2,ES2=σ2

    证明如下

    E ( X ‾ ) = E ( 1 n ∑ i = 1 n X i ) = 1 n ∑ i = 1 n E ( X i ) = 1 n n μ = μ \begin{aligned} E(\overline{X})&=E(\frac{1}{n}\sum\limits_{i=1}^nX_i)=\frac{1}{n}\sum\limits_{i=1}^nE(X_i)=\frac{1}{n}n\mu=\mu \end{aligned} E(X)=E(n1i=1nXi)=n1i=1nE(Xi)=n1nμ=μ

    D ( X ‾ ) = D ( 1 n ∑ i = 1 n X i ) = 1 n 2 ∑ i = 1 n D ( X i ) = 1 n 2 n σ 2 = σ 2 n \begin{aligned} D(\overline{X})&=D(\frac{1}{n}\sum\limits_{i=1}^nX_i)=\frac{1}{n^2}\sum\limits_{i=1}^nD(X_i)=\frac{1}{n^2}n\sigma^2=\frac{\sigma^2}{n}\end{aligned} D(X)=D(n1i=1nXi)=n21i=1nD(Xi)=n21nσ2=nσ2

    E S 2 = σ 2 E{S^2}=\sigma^2 ES2=σ2在样本方差时已经证明,不在重复。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

积跬步以至千里。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值