样本均值和样本方差的无偏性证明、正态分布样本方差的方差

样本均值和样本方差的无偏性

  对于独立同分布的样本$x_1...x_n$来说,他们的均值为与方差分别为:

$ \begin{aligned}&\bar{x} = \frac{1}{n}\sum\limits_{i=1}^{n}x_i \\& s^2 = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}{n-1}\end{aligned} $

  要证明样本方差的无偏性,首先要计算样本均值的方差。

样本均值的方差

$ \begin{aligned} D(\bar{x}) = D\left(\frac{\sum_{i=1}^{n}x_i}{n}\right) = \frac{1}{n^2}\sum\limits_{i=1}^{n}D(x_i) = \frac{1}{n^2}\sum\limits_{i=1}^{n}\sigma^2 = \frac{\sigma^2}{n} \end{aligned} $

样本均值和样本方差的无偏性证明

\begin{array}{lcl} \displaystyle E(\bar{x}) = E\left(\frac{1}{n}\sum\limits_{i=1}^{n}x_i\right) = \frac{1}{n}\sum\limits_{i=1}^{n}E(x_i) = \frac{1}{n}\sum\limits_{i=1}^{n}\mu = \mu \\\\ \begin{aligned} E(s^2) &= E\left(\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}\right) \\ &= \frac{1}{n-1}\sum\limits_{i=1}^{n}E(x_i^2 + \bar{x}^2 - 2x_i\bar{x}) \\ &= \frac{1}{n-1}\sum\limits_{i=1}^{n}\left[D(x) + E(x)^2 + D(\bar{x}) + E(\bar{x})^2 - 2E\left(\frac{x_i^2+x_i\sum_{j=1,j\ne i}^n x_j}{n} \right)\right]\\ &= \frac{1}{n-1}\sum\limits_{i=1}^{n}\left[\sigma^2 + \mu^2 + \frac{\sigma^2}{n} + \mu^2 - 2\frac{\sigma^2 + \mu^2 + (n-1)\mu^2}{n}\right]\\ &=  \frac{1}{n-1}\sum\limits_{i=1}^{n}\left(\frac{n - 1}{n}\sigma^2\right)\\ &= \sigma^2 \end{aligned} \end{array}

正态分布样本方差的方差

  对于服从正态分布的总体$X \sim N(\mu, \sigma^2)$,它的样本方差经过变换服从$\chi^2$分布,即:

  $\displaystyle\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n - 1)$.

  $\chi^2$分布的方差为它的自由度的两倍,所以:

$ \begin{aligned} &D\left(\frac{(n-1)s^2}{\sigma^2}\right) = 2(n - 1) \\ &D(s^2) = \frac{2\sigma^4}{n - 1} \end{aligned} $

### 回答1: 对数正态分布的均值和方差控制着正态分布的形状和分布特征。正态分布的形状受均值的影响,其中均值决定了分布的中心位置。而方差决定了分布的宽度,即分布的数据点分散程度。因此,通过控制均值和方差,可以控制正态分布的分布特征。 ### 回答2: 对数正态分布是一种连续型概率分布,它的取值范围是从零到正无穷。对数正态分布的均值和方差分别控制着正态分布的位置和离散程度。 首先,对数正态分布的均值决定了正态分布的位置。均值越大,说明对数正态分布的整体位置越往右偏移;均值越小,则整体位置越往左偏移。这是因为对数正态分布是以对数形式定义的,而对数函数在右侧定向。因此,对数正态分布的均值主要影响正态分布的位置。 其次,对数正态分布方差控制着正态分布的离散程度。方差越大,说明对数正态分布的波动性越高,使得正态分布更加分散;方差越小,则波动性减小,使得正态分布更加集中。方差与波动性之间存在正相关关系,方差越大,波动性就越大。因此,对数正态分布方差主要影响正态分布的离散程度。 总而言之,对数正态分布的均值和方差分别控制着正态分布的位置和离散程度。均值决定了正态分布的位置,方差决定了正态分布的离散程度。 ### 回答3: 对数正态分布是一种连续的概率分布,其均值和方差在一定程度上控制着正态分布的形态。 首先,均值影响正态分布的中心位置。对数正态分布的均值代表了对数值的平均值,当均值增大时,正态分布向右移动,中心位置也相应地增大。相反,当均值减小时,正态分布向左移动,中心位置也相应地减小。因此,对数正态分布的均值控制着正态分布的中心位置。 其次,方差影响正态分布的分散程度。对数正态分布方差代表了对数值的离散程度,方差较大时,正态分布的形态更加分散,即曲线更加平缓,尾部的概率密度较低。相反,方差较小时,正态分布的形态较为集中,曲线陡峭,尾部的概率密度较高。因此,对数正态分布方差控制着正态分布的分散程度。 总而言之,对数正态分布的均值和方差共同控制着正态分布的中心位置和分散程度。均值决定了分布的中心,而方差决定了分布的形态。在实际应用中,对数正态分布的均值和方差的选择会直接影响到分布的特征和行为,因此在分析和建模中是需要考虑的重要因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值