-
线性性
定义 x i = X i − X ‾ , y i = Y i − Y ‾ x_i=X_i-\overline X,y_i=Y_i-\overline Y xi=Xi−X,yi=Yi−Y。为了后续证明方便首先说明一些性质。
∑ x i = ∑ ( X i − X ‾ ) = 0 \sum x_i=\sum (X_i -\overline X)=0 ∑xi=∑(Xi−X)=0
∑ x i y i = ∑ x i ( Y i − Y ‾ ) = ∑ x i Y i − Y ‾ ∑ x i = ∑ x i Y i \sum x_iy_i=\sum x_i(Y_i-\overline Y)\\=\sum x_iY_i-\overline Y\sum x_i =\sum x_i Y_i ∑xiyi=∑xi(Yi−Y)=∑xiYi−Y∑xi=∑xiYi
根据以上性质证明线性性:
β ^ 1 = ∑ x i y i ∑ x i 2 = ∑ x i ( Y i − Y ‾ ) ∑ x i 2 = ∑ x i ∑ x i 2 Y i = ∑ k i Y i \hat \beta_1=\frac{\sum x_i y_i}{\sum x_i^2}=\frac{\sum x_i(Y_i-\overline Y)}{\sum x_i^2}=\frac{\sum x_i}{\sum x_i^2}Y_i =\sum k_iY_i β^1=∑xi2∑xiyi=∑xi2∑xi(Yi−Y)=∑xi2∑xiYi=∑kiYi
其中 k i = x i ∑ x i 2 k_i=\frac{x_i}{\sum x_i^2} ki=∑xi2xi
笔记:OLS的线性性、无偏性和有效性的证明
最新推荐文章于 2025-03-25 10:06:53 发布