展示DataLoader中的图片

先根据自己的需求构造pytorch数据集

dataset_masked = tdst.ImageFolder(root='./data/CNcroped_face_mask/',transform=img_preprocess)

train_loader = torch.utils.data.DataLoader(dataset_masked , batch_size=BATCH_SIZE, 
                                           sampler=train_sampler)

loader里面的数据的shape看一下

# 显示几张
for x in train_loader:
    # 设置画布大小
    fig = plt.figure(figsize=(4,4))
    print(x[0])#torch.Size([196, 3, 112, 112])一次196张图的矩阵,
    print(x[1])#torch.Size([196])对应196张图的分类index
    break

 

 以上两个矩阵是放在list列表里面的

然后数据在dataloader里面后,将多个数据展示出来查看数据

# 显示几张
for x in train_loader:
    # 设置画布大小
    fig = plt.figure(figsize=(8,8))
    
    for i in range(16):
        # 图片位置
        plt.subplot(4,4,i+1)
        # 转为numpy
        img = x[0][i].numpy()
        # 调整 通道顺序为PIL格式
        img =  np.transpose(img,(1,2,0))
        # 先转到[0,1],再乘以255
        img =(img + 1 )/ 2 * 255
        # 取整
        img = img.astype('int')
        # 显示
        plt.imshow(img)
        plt.axis('off')
    plt.show()
    break

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值