2025年网络安全值得关注的十大趋势

01.对抗性人工智能

尽管人工智能前景光明,但它在网络安全领域内仍处于应用的早期野蛮生长阶段。数十家初创公司正在探索人工智能驱动的网络安全工具,但很少有公司能产生有意义的影响。

攻击者却越来越多地使用人工智能,这进一步加剧了形势的复杂化。黑客正在利用人工智能以前所未有的速度自动攻击、逃避检测和识别漏洞。人工智能正在彻底改变行业,包括网络犯罪。

2025年,攻击者将利用人工智能策划高度针对性的网络钓鱼活动、开发高级恶意软件并以前所未有的速度识别系统漏洞。这些由人工智能驱动的攻击将挑战最先进的网络安全团队,因为威胁的数量和复杂性将超过人工防御。

攻击者的思维方式与我们相同,他们寻找弱点,并问自己:什么没有受到保护?这种对抗性使用人工智能引发了一场军备竞赛,防御者必须采用人工智能,不仅要应对威胁,还要预测并先发制人地阻止威胁。

02.提高人工智能技能并学习如何善用它

人工智能不仅是攻击者的工具,也是防御者的强大盟友。巧妙利用人工智能可以降低入侵成本并缩短入侵持续时间。

意识和培训计划以及人工智能的人力风险管理方面必须不断发展。如果你的培训和意识工作没有考虑到这些变化,那就是一个差距。明智地使用人工智能可以帮助防御并产生重大影响,无论是在数据泄露成本方面,还是在减少响应和控制事件所需的时间方面。我认为这需要被考虑到响应和检测计划中。

网络安全的猫捉老鼠游戏正在进入一个新的、更快的阶段,其中人工智能是红队和蓝队部署的主要技术。

03.AI将帮助扩展DevOps中的安全性

在最近的一项调查中,58%的开发人员表示他们对应用程序安全负有一定责任。具有安全技能的DevOps专业人员的需求仍然供不应求。

AI将通过自动执行日常任务、提供智能编码建议以及进一步缩小技能差距,继续使DevOps团队中的安全专业知识变得公开化。AI将集成安全性到整个构建流程中,通过利用可集成到开发人员工作流程中的可重复使用的安全模板,可以在设计阶段尽早发现潜在漏洞。

身份验证和授权也将得到改善,当服务在云环境中部署时,AI会自动分配角色和权限。最终结果将是改善安全结果、降低风险并增强开发人员与其安全同行之间的协作。

04.人工智能从检测到执行的重要作用

人工智能在网络安全领域的发展始于基础机器学习,并逐渐演变为预测性人工智能,它可以根据历史数据识别模式并预测威胁。如今,人工智能已进入生成阶段,为威胁检测和响应开辟了新的可能性。

专用AI模型的兴起是未来网络安全的一个关键差异化因素。与基于文本训练的通用大型语言模型不同,专用安全模型是建立在安全专用数据集上的。我们不是在书籍和演讲上训练语言模型,而是在设备、日志和行为模式上训练专业的安全模型。这使得AI能够检测到通用模型可能遗漏的细微异常。

05.自主安全运营

下一个飞跃是人工智能驱动的自动化,具体来说,是自主安全运营。有了自动化,人工智能不仅可以识别威胁,还可以实时采取行动来应对和补救事件。

这一发展有可能大幅扩大网络安全运营。现在的工作量可以提高两倍、五倍甚至十倍。人工智能使安全团队能够提示机器自主处理任务,从而让人类腾出时间进行战略计划。

06.利用(和保护)人工智能对于安全至关重要

AI是2024年的热门话题,2025年有望带来更多类似的话题。AI将降低网络安全的准入门槛,这将通过共享的、自然语言理解网络安全来打破安全团队内部的传统孤岛,从而加速从垂直安全到水平安全的转变,同时提升团队的技能。

尽管人工智能的讨论主要集中在如何释放巨大的创新潜力上,但人们也越来越意识到保护人工智能管道的必要性。围绕人工智能安全的讨论需要从人工智能带来的风险扩展到人工智能面临的风险。组织必须为更严格的审查和合规要求做好准备,重点是保护人工智能模型、训练数据和推理过程。

07.让高管了解数据泄露的成本

需要关注的不仅仅是CISO。虽然许多高管了解数据泄露的直接影响,但长期成本往往被低估。2022年数据泄露事件引发的案件至今仍在法庭审理中。随着技术格局的不断发展和网络威胁的日益复杂,首席信息安全官必须认识到人工智能可能带来的新威胁,同时采用人工智能解决方案以保持领先地位。

首席信息安全官应继续让更多的高管了解到这些成本的重要性。因此,应努力优化网络安全预算,以主动防御网络安全,从而降低总体风险暴露和遭受如此大规模网络安全和数据泄露的可能性。

08.供应链安全将成为首要关注点

2025年,组织将要求供应商提高透明度,并利用云原生工具实时分析代码依赖关系。最近发生的事件是SolarWinds 网络攻击,凸显了这一问题的严重性。该攻击针对的是广泛使用的软件提供商,导致数千家组织受到攻击。同样,Kaseya勒索软件攻击也凸显了小型供应商如何成为大型企业的门户。供应链攻击非常危险,因为它们利用了公司与供应商之间的信任关系,而且通常几个月都无法被发现。

各国政府和监管机构都注意到了这一点。2024年,美国和欧盟都出台了新的供应链安全指南,强调透明度和问责制的必要性。供应链安全将成为2025年的一个关键关注领域。我们将看到更强大的态势管理流程应用于整个开发流程,以及对软件物料清单 (SBOM) 和代码依赖关系进行更深入的安全分析。

09.身份在云安全中占据中心地位

人类和非人类身份权利管理正成为重中之重,尤其是当它与人工智能和数据安全交叉时。组织正在大力投资身份治理框架和工具,以防止未经授权的访问并提高问责制。云原生和人工智能应用的增长为身份管理系统带来了新的挑战。2025年,访问控制必须更具适应性,以应对非人类、基于服务的身份的增加。

随着人工智能和数据越来越紧密地联系在一起,管理谁有权访问什么将成为保护云环境的关键因素。管理身份和权限的系统已从传统的静态状态转变为更短暂、适应性更强的框架,这反映了现代数字交互所需的敏捷性。这些需求在未来一年将变得更加强烈。人工智能驱动的应用程序尤其需要对可传递身份有深入的了解。这些应用程序需要能够提供安全、高效访问的系统,即使角色和需求不断发展。

10.国家威胁将推动国防战略创新

2024年,针对关键基础设施的攻击成为头条新闻,从欧洲电网到美国供水系统。随着国家和网络犯罪集团专注于破坏社会最依赖的系统,这一趋势将在2025年加速。这些攻击通常旨在以最小的努力造成最大的混乱,并越来越多地在地缘政治冲突中被用作武器。

国家网络行动不断升级,重塑了网络安全格局。能源、医疗保健和金融等行业面临越来越多的攻击,推动了更严格的安全规定和防御战略的创新。

随着国家网络行动的发展,人们将更加关注保护关键基础设施免受资深黑客、资金充足的对手的攻击。到2025年,我们将继续看到更多国家支持的威胁,迫使组织重新考虑其防御策略并加强其安全态势。保护关键基础设施不仅是网络安全的首要任务,也是国家安全的问题。

人工智能网络安全革命才刚刚开始

人工智能正在改变网络安全,但我们仍处于起跑线上。人工智能生态系统仍然支离破碎,许多人工智能工具仍在证明其价值。但未来是明确的:人工智能将成为网络防御各个方面不可或缺的一部分。

我们的重点必须放在解决现实问题和预测未来的挑战上。不能只想着解决难题的某个部分,人工智能是把所有东西连接在一起的粘合剂。我们需要通过将人工智能驱动的创新与人类专业知识相结合,该行业有机会领先于攻击者,并为更安全的数字未来奠定基础。

今天只要你给我的文章点赞,我私藏的网安学习资料一样免费共享给你们,来看看有哪些东西。

网络安全学习资源分享:

最后给大家分享我自己学习的一份全套的网络安全学习资料,希望对想学习 网络安全的小伙伴们有帮助!

零基础入门

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

**读者福利 |** CSDN大礼包:《网络安全入门&进阶学习资源包》免费分享 **(安全链接,放心点击)**
在这里插入图片描述

1.网络安全学习路线图

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

在这里插入图片描述

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己录的网安视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

技术文档也是我自己整理的,包括我参加大型网安行动、CTF和挖SRC漏洞的经验和技术要点,电子书也有200多本【点击领取技术文档】

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

技术文档也是我自己整理的,包括我参加大型网安行动、CTF和挖SRC漏洞的经验和技术要点,电子书也有200多本【点击领取书籍】

在这里插入图片描述

4.工具包、面试题和源码

“工欲善其事必先利其器”我为大家总结出了最受欢迎的几十款款黑客工具。涉及范围主要集中在 信息收集、Android黑客工具、自动化工具、网络钓鱼等,感兴趣的同学不容错过。

在这里插入图片描述

最后就是我这几年整理的网安方面的面试题,如果你是要找网安方面的工作,它们绝对能帮你大忙。

这些题目都是大家在面试深信服、奇安信、腾讯或者其它大厂面试时经常遇到的,如果大家有好的题目或者好的见解欢迎分享。

参考解析:深信服官网、奇安信官网、Freebuf、csdn等

内容特点:条理清晰,含图像化表示更加易懂。

内容概要:包括 内网、操作系统、协议、渗透测试、安服、漏洞、注入、XSS、CSRF、SSRF、文件上传、文件下载、文件包含、XXE、逻辑漏洞、工具、SQLmap、NMAP、BP、MSF…

在这里插入图片描述
在这里插入图片描述

**读者福利 |** CSDN大礼包:《网络安全入门&进阶学习资源包》免费分享 **(安全链接,放心点击)**

<think>好的,我现在需要帮助用户了解2025嵌入式软件的发展趋势。首先,我得回顾一下用户之前的提问和我的回答,确保内容连贯。用户之前问过关于新技术或服务的问题,引用了创新、适应性以及中国嵌入式市场的现状。现在他们想知道2025的趋势,我需要结合之前的引用信息,并补充最新的技术动向。 首先,根据引用[1]提到的持续创新和适应性,尤其是环保和韧性,这可能涉及到低功耗技术和可持续设计。引用[2]提到嵌入式软件在芯片设计和系统集成中的重要性,所以硬件协同优化可能是一个趋势。引用[3]讨论了嵌入式技术在多个领域的应用,比如智能家居、医疗设备等,这提示应用领域的扩展。 接下来,我应该考虑当前的技术发展,比如AIoT(人工智能+物联网)的结合,边缘计算的普及,RISC-V架构的兴起,功能安全的需求,以及开发工具的自动化。这些都可能成为2025的趋势。 需要验证这些趋势是否符合行业动向。例如,AI在边缘设备的应用确实在增长,RISC-V的开源特性正在改变芯片设计,功能安全标准如ISO 26266在汽车领域的应用增加,这些都是可信的方向。 然后,组织这些趋势,分点说明,每个点需要具体的技术例子或应用场景,比如AI模型轻量化、5G集成、低功耗设计方法等。同时,要引用之前的资料来支持观点,比如提到中国政策支持嵌入式发展,呼应引用[2]。 可能还需要考虑用户是嵌入式工程师或互联网程序员,因此技术预测需要具备实用性和前瞻性,帮助他们规划学习或项目方向。例如,开发工具链的自动化能提升效率,符合持续创新的需求。 最后,生成相关问题,引导用户深入探讨,比如AIoT的具体应用、RISC-V的影响、功能安全标准的变化等。确保问题覆盖技术、应用和开发实践,帮助用户全面了解。 检查是否有遗漏的重要趋势,比如量子计算的影响可能还不太显著,但可持续性和绿色计算值得强调。同时,确保LaTeX格式正确,数学表达式用$...$,独立公式用$$...$$,但当前内容可能较少涉及复杂公式,需注意。</think>### 2025嵌入式软件发展趋势与技术预测 #### 1. **AI与边缘计算的深度集成** 嵌入式系统将更多承担边缘端AI推理任务,轻量化神经网络模型(如TinyML)和专用AI加速芯片(如NPU)成为核心趋势。 - **技术支撑**:模型压缩技术(如量化、剪枝)、边缘框架(TensorFlow Lite Micro) - **应用场景**:智能传感器、工业预测性维护[^3] #### 2. **RISC-V架构的全面普及** 开源指令集架构RISC-V在嵌入式领域的市场份额将大幅提升,推动定制化芯片设计。 $$ \text{开发成本} \propto \frac{1}{\text{架构开放性}} $$ 中国政策支持自主可控芯片技术,加速RISC-V生态建设[^2]。 #### 3. **功能安全与信息安全融合** 针对汽车电子(ISO 26262)和医疗设备(IEC 62304),嵌入式软件需同时满足功能安全(FuSa)和信息安全(如TEE可信执行环境)标准。 - **关键技术**:形式化验证、动态运行时防护 #### 4. **低功耗与可持续设计** 基于$E = P \cdot t$的能耗公式,软件算法优化(如事件驱动调度)与硬件能效协同设计成为重点,符合绿色计算需求[^1]。 #### 5. **开发工具链的智能化升级** AI辅助代码生成(如GitHub Copilot嵌入式适配)、自动化测试框架(CI/CD for Embedded)将提升开发效率。 #### 6. **5G/6G与嵌入式系统融合** 高可靠低时延通信(URLLC)推动工业控制、车联网(V2X)等场景的实时嵌入式软件革新[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值