高维概率问题

更多阅读:sppy.site

这个问题是视频《Darts in Higher Dimensions》后的思考题。

视频是由3Blue1BrownManim (Mathematical Animation Engine) 引擎制作

问题

等概率地从区间 [ 0 , 1 ] [0,1] [0,1] 中不停地取数,直到这些数的和超过 1 1 1 为止。记 x i x_i xi 为第 i i i 次取出的数, n n n 为这些数的个数,即有 ∑ i = 1 n x i > 1 \sum\limits_{i=1}^n x_i>1 i=1nxi>1 ,且 ∑ i = 1 n − 1 x i ≤ 1 \sum\limits_{i=1}^{n-1} x_i \le 1 i=1n1xi1 。求个数 n n n 的数学期望 E ( n ) E(n) E(n)

解答

显然个数 n n n 的数学期望
E ( n ) = ∑ k = 1 ∞ k ⋅ P ( n = k ) (1) \tag{1} E(n)=\sum_{k=1}^\infty k \cdot P(n=k) E(n)=k=1kP(n=k)(1)

问题转变为求 n = k n=k n=k 时的概率 P ( n = k ) P(n=k) P(n=k)

P k = P ( x 1 + x 2 + ⋯ + x k ≤ 1 ) P_k=P(x_1+x_2+\cdots+x_k \le 1) Pk=P(x1+x2++xk1) ,则 P k P_k Pk 表示个数 n n n 不小于 k + 1 k+1 k+1 的概率,即 P k = P ( n > k ) P_k=P(n>k) Pk=P(n>k) 。这样有
P ( n = k ) = P ( n > k − 1 ) − P ( n > k ) (2) \tag{2} P(n=k) = P(n>k-1) - P(n>k) P(n=k)=P(n>k1)P(n>k)(2)

将式 ( 2 ) (2) (2)代入式 ( 1 ) (1) (1)可得
E ( n ) = ∑ k = 1 ∞ k ⋅ [ P ( n > k − 1 ) − P ( n > k ) ] = ∑ k = 1 ∞ P ( n > k − 1 ) = ∑ k = 1 ∞ P k − 1 (3) \tag{3} \begin{aligned} E(n)&=\sum_{k=1}^\infty k \cdot \big[P(n>k-1) - P(n>k)\big]\\[5pt] &=\sum_{k=1}^\infty P(n>k-1)=\sum_{k=1}^\infty P_{k-1} \end{aligned} E(n)=k=1k[P(n>k1)P(n>k)]=k=1P(n>k1)=k=1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值